These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17271064)

  • 1. High resolution optical mapping of cardiac action potentials in freely beating rabbit hearts.
    Inagaki M; Hidaka I; Aiba T; Tatewaki T; Sunagawa K; Sugimachi M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3578-80. PubMed ID: 17271064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts.
    Kappadan V; Telele S; Uzelac I; Fenton F; Parlitz U; Luther S; Christoph J
    Front Physiol; 2020; 11():464. PubMed ID: 32528304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
    Tai DC; Caldwell BJ; LeGrice IJ; Hooks DA; Pullan AJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H985-93. PubMed ID: 15130885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
    Lebert J; Ravi N; Kensah G; Christoph J
    Front Cardiovasc Med; 2022; 9():787627. PubMed ID: 35686036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fiber-based ratiometric optical cardiac mapping channel using a diffraction grating and split detector.
    Brown NH; Dobrovolny HM; Gauthier DJ; Wolf PD
    Biophys J; 2007 Jul; 93(1):254-63. PubMed ID: 17416627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical mapping of contracting hearts.
    Kappadan V; Sohi A; Parlitz U; Luther S; Uzelac I; Fenton F; Peters NS; Christoph J; Ng FS
    J Physiol; 2023 Apr; 601(8):1353-1370. PubMed ID: 36866700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental methods for simultaneous measurement of action potentials and electrograms in isolated heart.
    Kolářová J; Fialová K; Janousek O; Nováková M; Provazník I
    Physiol Res; 2010; 59 Suppl 1():S71-S80. PubMed ID: 20626223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
    Bachtel AD; Gray RA; Stohlman JM; Bourgeois EB; Pollard AE; Rogers JM
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2120-6. PubMed ID: 21536528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac optical mapping - State-of-the-art and future challenges.
    O'Shea C; Kabir SN; Holmes AP; Lei M; Fabritz L; Rajpoot K; Pavlovic D
    Int J Biochem Cell Biol; 2020 Sep; 126():105804. PubMed ID: 32681973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium.
    Wu J; Biermann M; Rubart M; Zipes DP
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1336-47. PubMed ID: 9869533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and use of an "optrode" for optical recordings of cardiac action potentials.
    Neunlist M; Zou SZ; Tung L
    Pflugers Arch; 1992 Apr; 420(5-6):611-7. PubMed ID: 1614837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous optical mapping of transmembrane potential and wall motion in isolated, perfused whole hearts.
    Bourgeois EB; Bachtel AD; Huang J; Walcott GP; Rogers JM
    J Biomed Opt; 2011 Sep; 16(9):096020. PubMed ID: 21950934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts.
    Fedorov VV; Lozinsky IT; Sosunov EA; Anyukhovsky EP; Rosen MR; Balke CW; Efimov IR
    Heart Rhythm; 2007 May; 4(5):619-26. PubMed ID: 17467631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study.
    Rodriguez MP; Nygren A
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):774-82. PubMed ID: 25350913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.