BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17271153)

  • 1. Assessment of respiratory muscle effort studying diaphragm movement registered with surface sensors. Animal model (dogs).
    Torres A; Fiz JA; Galdiz B; Gea J; Morera J; Jané R
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3917-20. PubMed ID: 17271153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive monitoring of diaphragmatic timing by means of surface contact sensors: an experimental study in dogs.
    Fiz JA; Jané R; Torres A; Morera J; Galdiz B; Gea J; Grassino A
    BMC Pulm Med; 2004 Sep; 4():8. PubMed ID: 15355545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inspiratory pressure evaluation by means of the entropy of respiratory mechanomyographic signals.
    Torres A; Fiz JA; Galdiz JB; Gea J; Morera J; Jané R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5735-8. PubMed ID: 17947166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rényi entropy and Lempel-Ziv complexity of mechanomyographic recordings of diaphragm muscle as indexes of respiratory effort.
    Torres A; Fiz JA; Jane R; Laciar E; Galdiz JB; Gea J; Morera J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2112-5. PubMed ID: 19163113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the empirical mode decomposition method to the analysis of respiratory mechanomyographic signals.
    Torres A; Fiz JA; Jané R; Galdiz JB; Gea J; Morera J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1566-9. PubMed ID: 18002269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wavelet multiscale based method to separate the high and low frequency components of mechanomyographic signals.
    Torres A; Fiz J; Galdiz B; Gea J; Morera J; Jane R
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7262-5. PubMed ID: 17281956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Fetal Movement Simulator for the Performance Evaluation of Vibration Sensors for Wearable Fetal Movement Monitors.
    Ghosh AK; Burniston SF; Krentzel D; Roy A; Sheikh AS; Siddiq T; Trinh PMP; Velazquez MM; Vielle HT; Nowlan NC; Vaidyanathan R
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory changes in thoracic muscle length during bronchoconstriction.
    van Lunteren E; Haxhiu MA; Deal EC; Arnold JS; Cherniack NS
    J Appl Physiol (1985); 1987 Jul; 63(1):221-8. PubMed ID: 3624127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical activation of expiratory muscles increases with time in pentobarbital-anesthetized dogs.
    Warner DO; Joyner MJ; Rehder K
    J Appl Physiol (1985); 1992 Jun; 72(6):2285-91. PubMed ID: 1629085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminophylline increases ventilation and diaphragm contractility in awake canines.
    Jagers JV; Hawes HG; Easton PA
    Respir Physiol Neurobiol; 2009 Jul; 167(3):273-80. PubMed ID: 19481176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity of shortening of inspiratory muscles and inspiratory flow.
    Fitting JW; Easton PA; Grassino AE
    J Appl Physiol (1985); 1986 Feb; 60(2):670-7. PubMed ID: 3081483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Costal and crural diaphragm function during panting in awake canines.
    Easton PA; Abe T; Young RN; Smith J; Guerraty A; Grassino AE
    J Appl Physiol (1985); 1994 Oct; 77(4):1983-90. PubMed ID: 7836226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vector analysis in partitioning of inspiratory muscle action in dogs.
    Ward ME; Paiva M; Macklem PT
    Eur Respir J; 1992 Feb; 5(2):219-27. PubMed ID: 1559587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role and structure of the scalene: an accessory inspiratory muscle in hamster.
    Fournier M; Lewis MI
    J Appl Physiol (1985); 1996 Dec; 81(6):2436-44. PubMed ID: 9018490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest wall responses to rebreathing in halothane-anesthetized dogs.
    Warner DO; Joyner MJ; Ritman EL
    Anesthesiology; 1995 Oct; 83(4):835-43. PubMed ID: 7574064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional distribution of blood flow within the diaphragm.
    Brancatisano A; Amis TC; Tully A; Kelly WT; Engel LA
    J Appl Physiol (1985); 1991 Aug; 71(2):583-9. PubMed ID: 1938731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Videofluoroscopic assessment of muscle fiber shortening in the in situ canine diaphragm.
    Knight H; Petroll WM; Adams JM; Shaffer HA; Rochester DF
    J Appl Physiol (1985); 1990 May; 68(5):2200-7. PubMed ID: 2361924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the rabbit diaphragm to tendon vibration.
    Jammes Y; Arbogast S; De Troyer A
    Neurosci Lett; 2000 Aug; 290(2):85-8. PubMed ID: 10936683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Costal and crural diaphragm function during CO2 rebreathing in awake dogs.
    Easton PA; Fitting JW; Arnoux R; Guerraty A; Grassino AE
    J Appl Physiol (1985); 1993 Mar; 74(3):1406-18. PubMed ID: 8482684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminophylline increases parasternal muscle action in awake canines.
    Suneby Jagers JV; Ji M; Rothwell B; Easton PA
    Pulm Pharmacol Ther; 2019 Jun; 56():1-7. PubMed ID: 30797981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.