BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17271187)

  • 1. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce T; Oakes S; Pope R; Williams J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4045-8. PubMed ID: 17271187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.
    Pearce TM; Wilson JA; Oakes SG; Chiu SY; Williams JC
    Lab Chip; 2005 Jan; 5(1):97-101. PubMed ID: 15616746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.
    van de Wijdeven R; Ramstad OH; Bauer US; Halaas Ø; Sandvig A; Sandvig I
    Biomed Microdevices; 2018 Jan; 20(1):9. PubMed ID: 29294210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches for CMOS-based devices for large-scale neural recording.
    Ruther P; Paul O
    Curr Opin Neurobiol; 2015 Jun; 32():31-7. PubMed ID: 25463562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale fabrication of penetrating neural microelectrode arrays.
    Bhandari R; Negi S; Solzbacher F
    Biomed Microdevices; 2010 Oct; 12(5):797-807. PubMed ID: 20480240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery.
    Lee HJ; Son Y; Kim J; Lee CJ; Yoon ES; Cho IJ
    Lab Chip; 2015 Mar; 15(6):1590-7. PubMed ID: 25651943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel lab-on-chip platform enabling axotomy and neuromodulation in a multi-nodal network.
    van de Wijdeven R; Ramstad OH; Valderhaug VD; Köllensperger P; Sandvig A; Sandvig I; Halaas Ø
    Biosens Bioelectron; 2019 Sep; 140():111329. PubMed ID: 31163396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in responses of wide dynamic range neurons in the spinal dorsal horn after dorsal root or dorsal root ganglion compression.
    Hanai F; Matsui N; Hongo N
    Spine (Phila Pa 1976); 1996 Jun; 21(12):1408-14; discussion 1414-5. PubMed ID: 8792516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a microfluidic dispensing system for localised stimulation of cellular networks.
    Kraus T; Verpoorte E; Linder V; Franks W; Hierlemann A; Heer F; Hafizovic S; Fujii T; de Rooij NF; Koster S
    Lab Chip; 2006 Feb; 6(2):218-29. PubMed ID: 16450031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HermesD: A High-Rate Long-Range Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications.
    Miranda H; Gilja V; Chestek CA; Shenoy KV; Meng TH
    IEEE Trans Biomed Circuits Syst; 2010 Jun; 4(3):181-91. PubMed ID: 23853342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays.
    Seu GP; Angotzi GN; Boi F; Raffo L; Berdondini L; Meloni P
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):839-850. PubMed ID: 29993584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micromachined silicon multielectrode for multiunit recording.
    Spence AJ; Hoy RR; Isaacson MS
    J Neurosci Methods; 2003 Jun; 126(2):119-26. PubMed ID: 12814836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering.
    Song YA; Ibrahim AM; Rabie AN; Han J; Lin SJ
    Biotechnol Genet Eng Rev; 2013; 29():113-34. PubMed ID: 24568276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capabilities of a penetrating microelectrode array for recording single units in dorsal root ganglia of the cat.
    Aoyagi Y; Stein RB; Branner A; Pearson KG; Normann RA
    J Neurosci Methods; 2003 Sep; 128(1-2):9-20. PubMed ID: 12948544
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.