These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17271211)

  • 1. Adaptive neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Blana D; Chadwick E; Kirsch RF
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4133-6. PubMed ID: 17271211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2432-5. PubMed ID: 18002485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.
    Hincapie JG; Blana D; Chadwick EK; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):255-63. PubMed ID: 18586604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing remaining voluntary muscle synergies to control FES elbow extension after spinal cord injury.
    Giuffrida JP; Crago PE
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4118-21. PubMed ID: 17271207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback control of upright seating with functional neuromuscular stimulation during a reaching task after spinal cord injury: a feasibility study.
    Friederich ARW; Bao X; Triolo RJ; Audu ML
    J Neuroeng Rehabil; 2022 Dec; 19(1):139. PubMed ID: 36510259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Reinforcement Learning for Control of Time-Varying Musculoskeletal Systems With High Fatigability: A Feasibility Study.
    Abreu J; Crowder DC; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2613-2622. PubMed ID: 36063517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury.
    Thomas CK; Zaidner EY; Calancie B; Broton JG; Bigland-Ritchie BR
    Exp Neurol; 1997 Dec; 148(2):414-23. PubMed ID: 9417821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic NMES controller for arm movements supported by a passive exoskeleton.
    Ferrante S; Ambrosini E; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1888-91. PubMed ID: 23366282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.
    Ambrosini E; Ferrante S; Tibiletti M; Schauer T; Klauer C; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4259-62. PubMed ID: 22255280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a time-delayed 5 degrees of freedom arm model for use in upper extremity functional electrical stimulation.
    Cooman P; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():322-4. PubMed ID: 23365895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Neuroprosthetic Approaches to Restoration of Upper Extremity Function in Spinal Cord Injury.
    Kilgore KL; Bryden A; Keith MW; Hoyen HA; Hart RL; Nemunaitis GA; Peckham PH
    Top Spinal Cord Inj Rehabil; 2018; 24(3):252-264. PubMed ID: 29997428
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.