BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17271213)

  • 1. "Safe" charge-injection waveforms for iridium oxide (AIROF) microelectrodes.
    Troyk PR; Detlefsen DE; Cogan SF; Ehrlich J; Bak M; McCreery DB; Bullara L; Schmidt E
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4141-4. PubMed ID: 17271213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD; Detlefsen DE
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):327-32. PubMed ID: 16485762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laboratory testing and driving system for AIROF microelectrodes.
    Srivastava NR; Troyk PR; Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4271-4. PubMed ID: 17271248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated iridium oxide film (AIROF) electrodes for neural tissue stimulation.
    Frederick RA; Meliane IY; Joshi-Imre A; Troyk PR; Cogan SF
    J Neural Eng; 2020 Oct; 17(5):056001. PubMed ID: 32947268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation.
    Cogan SF; Guzelian AA; Agnew WF; Yuen TG; McCreery DB
    J Neurosci Methods; 2004 Aug; 137(2):141-50. PubMed ID: 15262054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing polarization of AIROF microelectrodes.
    Troyk PR; Hu Z; Cogan SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1726-9. PubMed ID: 18002309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1612-4. PubMed ID: 16189975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 96-channel neural stimulation system for driving AIROF microelectrodes.
    Hu Z; Troyk P; Cogan S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4244-7. PubMed ID: 17271241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic activation of iridium electrodes over a wireless link.
    Hu Z; Troyk P; DeMichele G; Kayvani K; Suh S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2788-91. PubMed ID: 23366504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing Charge Injection Limits of Iridium Oxide Electrodes with a Programmable Anodic Bias Circuit.
    Ersöz A; Kim I; Han M
    Int IEEE EMBS Conf Neural Eng; 2021 May; 2021():540-543. PubMed ID: 34925702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Gasbarro CM; Plante TD
    J Neural Eng; 2007 Jun; 4(2):79-86. PubMed ID: 17409482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable neurostimulator circuit with anodic bias enhances stimulation injection capacity.
    Ersöz A; Kim I; Han M
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36067737
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro and in vivo charge capacity of AIROF microelectrodes.
    Hu Z; Troyk PR; Brawn TP; Margoliash D; Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():886-9. PubMed ID: 17946869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
    Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():882-5. PubMed ID: 17946868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Injection Enhancement Comparisons of Iridium Oxide Microelectrodes
    Ersöz A; Kim I; Han M
    Int IEEE EMBS Conf Neural Eng; 2023 Apr; 2023():. PubMed ID: 38590827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
    Negi S; Bhandari R; Rieth L; Van Wagenen R; Solzbacher F
    J Neurosci Methods; 2010 Jan; 186(1):8-17. PubMed ID: 19878693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array.
    Yoo JM; Negi S; Tathireddy P; Solzbacher F; Song JI; Rieth LW
    J Neurosci Methods; 2013 Apr; 215(1):78-87. PubMed ID: 23458659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Automatic Monitor System for AIROF Microelectrodes.
    Hu Z; Troyk P; Cogan S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7386-8. PubMed ID: 17281987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and electrochemical comparison of SIROF-AIROF-EIROF microelectrodes for neural interfaces.
    Kang XY; Liu JQ; Tian HC; Yang B; NuLi Y; Yang CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():478-81. PubMed ID: 25570000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays.
    Frederick RA; Shih E; Towle VL; Joshi-Imre A; Troyk PR; Cogan SF
    Front Neurosci; 2022; 16():876032. PubMed ID: 36003961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.