These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17271245)

  • 1. Progress in the development of a multifunctional hand prosthesis.
    Pylatiuk C; Mounier S; Kargov A; Schulz S; Bretthauer G
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4260-3. PubMed ID: 17271245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two multiarticulated hydraulic hand prostheses.
    Pylatiuk C; Schulz S; Kargov A; Bretthauer G
    Artif Organs; 2004 Nov; 28(11):980-6. PubMed ID: 15504113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision grasps of children and young and old adults: individual differences in digit contact strategy, purchase pattern, and digit posture.
    Wong YJ; Whishaw IQ
    Behav Brain Res; 2004 Sep; 154(1):113-23. PubMed ID: 15302117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehand II: Wire-Driven Five-Fingered Electric Prosthetic Hand Utilizing Elasticity of a Cosmetic Glove.
    Odagaki N; Yoshikawa M; Tanaka Y; Kawashima N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6661-6664. PubMed ID: 31947369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design and development of a gloveless endoskeletal prosthetic hand.
    Doshi R; Yeh C; LeBlanc M
    J Rehabil Res Dev; 1998 Oct; 35(4):388-95. PubMed ID: 10220216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mechanical properties of silicone and PVC (polyvinylchloride) cosmetic gloves for articulating hand prostheses.
    Smit G; Plettenburg DH
    J Rehabil Res Dev; 2013; 50(5):723-32. PubMed ID: 24013919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Multi-Grip Patterns Prosthetic Hand With Single Actuator.
    Wattanasiri P; Tangpornprasert P; Virulsri C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1188-1198. PubMed ID: 29877843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change detection for real-world objects in perihand space.
    Agauas SJ; Thomas LE
    Atten Percept Psychophys; 2019 Oct; 81(7):2365-2383. PubMed ID: 31407273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of Arch Function for Adaptive Multi-Finger Prosthetic Hand.
    Yong X; Jing X; Wu X; Jiang Y; Yokoi H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of haptic feedback impairs control of hand posture: a study in chronically deafferented individuals when grasping and lifting objects.
    Miall RC; Rosenthal O; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2019 Sep; 237(9):2167-2184. PubMed ID: 31209510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism to compensate undesired stiffness in joints of prosthetic hands.
    Smit G; Plettenburg D; Van der Helm F
    Prosthet Orthot Int; 2014 Apr; 38(2):96-102. PubMed ID: 23690287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of human grasping behavior: object characteristics and grasp type.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(3):311-23. PubMed ID: 25248214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders.
    Jarque-Bou N; Gracia-Ibáñez V; Sancho-Bru JL; Vergara M; Pérez-González A; Andrés FJ
    Appl Ergon; 2016 Sep; 56():52-61. PubMed ID: 27184310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.