BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17271248)

  • 21. Charge Injection Enhancement Comparisons of Iridium Oxide Microelectrodes
    Ersöz A; Kim I; Han M
    Int IEEE EMBS Conf Neural Eng; 2023 Apr; 2023():. PubMed ID: 38590827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro study of iridium electrodes for neural stimulation.
    Aryan NP; Brendler C; Rieger V; Schleehauf S; Heusel G; Rothermel A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():819-22. PubMed ID: 23366018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sputtered Ruthenium Oxide Neural Stimulation Electrodes
    Chakraborty B; Joshi-Imre A; Cogan SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6655-6658. PubMed ID: 34892634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of micromachined probes for the recording of cardiac electrograms in isolated heart tissues.
    Kim CS; Ufer S; Seagle CM; Engle CL; Troy Nagle H; Johnson TA; Cascio WE
    Biosens Bioelectron; 2004 Apr; 19(9):1109-16. PubMed ID: 15018966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first/charge-balanced/biphasic pulses for 0.566 ≤ k ≤ 2.3 in oxygenated and deoxygenated sulfuric acid.
    Kumsa DW; Montague FW; Hudak EM; Mortimer JT
    J Neural Eng; 2016 Oct; 13(5):056001. PubMed ID: 27464506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extending the understanding of Shannon's safe stimulation limit for platinum electrodes: biphasic charge-balanced pulse trains in unbuffered saline at pH = 1 to pH = 12.
    Niederhoffer T; Vanhoestenberghe A; Lancashire HT
    J Neural Eng; 2024 Apr; ():. PubMed ID: 38579740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imbalanced biphasic electrical stimulation: muscle tissue damage.
    Scheiner A; Mortimer JT; Roessmann U
    Ann Biomed Eng; 1990; 18(4):407-25. PubMed ID: 2221508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses.
    Rose TL; Robblee LS
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1118-20. PubMed ID: 2276759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optoelectronic retinal prosthesis: system design and performance.
    Loudin JD; Simanovskii DM; Vijayraghavan K; Sramek CK; Butterwick AF; Huie P; McLean GY; Palanker DV
    J Neural Eng; 2007 Mar; 4(1):S72-84. PubMed ID: 17325419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments.
    Gielen FL; Bergveld P
    Med Biol Eng Comput; 1982 Jan; 20(1):77-83. PubMed ID: 7098563
    [No Abstract]   [Full Text] [Related]  

  • 35. Electrode system influence on biphasic waveform defibrillation efficacy in humans.
    Bardy GH; Troutman C; Johnson G; Mehra R; Poole JE; Dolack GL; Kudenchuk PJ; Gartman DM
    Circulation; 1991 Aug; 84(2):665-71. PubMed ID: 1860210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-balanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues.
    Kumsa DW; Bhadra N; Hudak EM; Mortimer JT
    J Neural Eng; 2017 Oct; 14(5):056003. PubMed ID: 28813367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of electrical transients and corrosion responses of pulsed MP35N and 316LVM electrodes.
    Riedy LW; Walter JS
    Ann Biomed Eng; 1994; 22(2):202-11. PubMed ID: 8074331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histopathologic evaluation of prolonged intracortical electrical stimulation.
    Agnew WF; Yuen TG; McCreery DB; Bullara LA
    Exp Neurol; 1986 Apr; 92(1):162-85. PubMed ID: 3956647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes.
    Cisnal A; Fraile JC; Pérez-Turiel J; Muñoz-Martinez V; Müller C; R Ihmig F
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coulometric detection of irreversible electrochemical reactions occurring at Pt microelectrodes used for neural stimulation.
    Musa S; Rand DR; Bartic C; Eberle W; Nuttin B; Borghs G
    Anal Chem; 2011 Jun; 83(11):4012-22. PubMed ID: 21545093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.