These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17271342)

  • 41. Anticipatory control of manipulative forces in Parkinson's disease.
    Gordon AM; Ingvarsson PE; Forssberg H
    Exp Neurol; 1997 Jun; 145(2 Pt 1):477-88. PubMed ID: 9217084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visual properties of objects affect manipulative forces and respiration differently.
    Lamberg EM; Mateika JH; Gordon AM
    Brain Res; 2005 Dec; 1066(1-2):158-63. PubMed ID: 16337926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location.
    Lukos J; Ansuini C; Santello M
    J Neurosci; 2007 Apr; 27(14):3894-903. PubMed ID: 17409254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. I: anticipatory scaling.
    Gordon AM; Duff SV
    Dev Med Child Neurol; 1999 Mar; 41(3):166-75. PubMed ID: 10210249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?
    Cashaback JG; McGregor HR; Pun HC; Buckingham G; Gribble PL
    J Neurophysiol; 2017 Jan; 117(1):260-274. PubMed ID: 27760821
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned.
    Marneweck M; Knelange E; Lee-Miller T; Santello M; Gordon AM
    PLoS One; 2015; 10(9):e0138258. PubMed ID: 26376089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
    Quaney BM; Rotella DL; Peterson C; Cole KJ
    J Neurosci; 2003 Mar; 23(5):1981-6. PubMed ID: 12629204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Can internal models of objects be utilized for different prehension tasks?
    Quaney BM; Nudo RJ; Cole KJ
    J Neurophysiol; 2005 Apr; 93(4):2021-7. PubMed ID: 15590734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning of Dexterous Object Manipulation in a Virtual Reality Environment.
    Liu Y; Gunter C; Leib R; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4175-4178. PubMed ID: 36085806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intermanual transfer of sensorimotor memory for grip force when lifting objects: the role of wrist angulation.
    Bensmail D; Sarfeld AS; Fink GR; Nowak DA
    Clin Neurophysiol; 2010 Mar; 121(3):402-7. PubMed ID: 20004612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits.
    Nowak DA; Hermsdörfer J
    Neurosci Res; 2003 Sep; 47(1):65-72. PubMed ID: 12941448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Internal models underlying grasp can be additively combined.
    Davidson PR; Wolpert DM
    Exp Brain Res; 2004 Apr; 155(3):334-40. PubMed ID: 14714157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
    Ehrsson HH; Fagergren A; Johansson RS; Forssberg H
    J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wrist action affects precision grip force.
    Werremeyer MM; Cole KJ
    J Neurophysiol; 1997 Jul; 78(1):271-80. PubMed ID: 9242279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Factors influencing variability in load forces in a tripod grasp.
    Baud-Bovy G; Soechting JF
    Exp Brain Res; 2002 Mar; 143(1):57-66. PubMed ID: 11907691
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of visually perceived size to the scaling of fingertip forces when lifting a 'small' object.
    Kawai S; MacKenzie CL; Ivens CJ; Yamamoto T
    Percept Mot Skills; 2000 Dec; 91(3 Pt 1):827-35. PubMed ID: 11153857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size illusion influences how we lift but not how we grasp an object.
    Brenner E; Smeets JB
    Exp Brain Res; 1996 Oct; 111(3):473-6. PubMed ID: 8911942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of grasp stability when humans lift objects with different surface curvatures.
    Jenmalm P; Goodwin AW; Johansson RS
    J Neurophysiol; 1998 Apr; 79(4):1643-52. PubMed ID: 9535935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):59-71. PubMed ID: 3416958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Independent control of human finger-tip forces at individual digits during precision lifting.
    Edin BB; Westling G; Johansson RS
    J Physiol; 1992 May; 450():547-64. PubMed ID: 1432717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.