These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17271398)

  • 1. Design and development of virtual reality based perceptual-motor rehabilitation scenarios.
    Rizzo AA; Cohen I; Weiss PL; Kim JG; Yeh SC; Zali B; Hwang J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4852-5. PubMed ID: 17271398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor rehabilitation using virtual reality.
    Sveistrup H
    J Neuroeng Rehabil; 2004 Dec; 1(1):10. PubMed ID: 15679945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of auditory background noise and virtual reality technology on video game distraction analgesia.
    Zeroth JA; Dahlquist LM; Foxen-Craft EC
    Scand J Pain; 2019 Jan; 19(1):207-217. PubMed ID: 30422807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual environments for motor rehabilitation: review.
    Holden MK
    Cyberpsychol Behav; 2005 Jun; 8(3):187-211; discussion 212-9. PubMed ID: 15971970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A succinct overview of virtual reality technology use in Alzheimer's disease.
    García-Betances RI; Arredondo Waldmeyer MT; Fico G; Cabrera-Umpiérrez MF
    Front Aging Neurosci; 2015; 7():80. PubMed ID: 26029101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.
    Tieri G; Morone G; Paolucci S; Iosa M
    Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affordable Personalized, Immersive VR Motor Rehabilitation System with Full Body Tracking.
    Adolf J; Dolezal J; Lhotska L
    Stud Health Technol Inform; 2019; 261():75-81. PubMed ID: 31156094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation.
    Trombetta M; Bazzanello Henrique PP; Brum MR; Colussi EL; De Marchi ACB; Rieder R
    Comput Methods Programs Biomed; 2017 Nov; 151():15-20. PubMed ID: 28946996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients.
    Cameirão MS; Faria AL; Paulino T; Alves J; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):70. PubMed ID: 27503215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIVE-streaming 3D images: A neuroscience approach to full-body illusions.
    de Boer DML; Namdar F; Lambers M; Cleeremans A
    Behav Res Methods; 2022 Jun; 54(3):1346-1357. PubMed ID: 34582000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities.
    Weiss PL; Bialik P; Kizony R
    Cyberpsychol Behav; 2003 Jun; 6(3):335-42. PubMed ID: 12855092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a virtual reality game to assess goal-directed hand movements in children: A pilot feasibility study.
    Gabyzon ME; Engel-Yeger B; Tresser S; Springer S
    Technol Health Care; 2016; 24(1):11-9. PubMed ID: 26409528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the Degree of Movement Dissimilarity between Two Distinct Action Scenarios: An Exploratory Approach with Procrustes Analysis.
    Passos P; Campos T; Diniz A
    Front Psychol; 2017; 8():640. PubMed ID: 28503159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.