These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17271411)

  • 41. ARBIN: Augmented Reality Based Indoor Navigation System.
    Huang BC; Hsu J; Chu ET; Wu HM
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of hand-transmitted vibration of tapping the long cane for visually handicapped people in Japan.
    Morioka M; Maeda S
    Ind Health; 1998 Apr; 36(2):179-90. PubMed ID: 9583316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gait and long cane kinematics: a comparison of sighted and visually impaired subjects.
    Johnson JT; Johnson BF; Blasch BB; de l'Aune WD
    J Orthop Sports Phys Ther; 1998 Feb; 27(2):162-6. PubMed ID: 9475140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contribution of Vibration, Tapping Sound, and Reaction Force to Hardness Perception During Indirect Tapping Using a White Cane.
    Tanabe T; Nunokawa K; Doi K; Ino S
    IEEE Trans Haptics; 2022; 15(2):246-254. PubMed ID: 35226605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of Orientation and Mobility Training System for Visually Impaired Children Using VR.
    Seki R; Shimomura Y; Asakawa N; Wada H
    Stud Health Technol Inform; 2023 Aug; 306():527-534. PubMed ID: 37638958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Virtual Blind Cane Using a Line Laser-Based Vision System and an Inertial Measurement Unit.
    Dang QK; Chee Y; Pham DD; Suh YS
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26771618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane.
    Kim DS; Emerson RW; Naghshineh K
    Br J Vis Impair; 2017 Sep; 35(3):217-231. PubMed ID: 29276326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a visual information to auditory information transformation system for ambulation assistance.
    Kim JH; Park JE; Ji IH; Won CH; Lee JM; Jo JH; Park YJ; Nah JW
    Technol Health Care; 2019; 27(S1):165-173. PubMed ID: 31045536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of the obstacle detection system combining orientation sensor of smartphone and distance sensor.
    Tange Y; Takeno S; Hori J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6696-9. PubMed ID: 26737829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.
    Katzschmann RK; Araki B; Rus D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):583-593. PubMed ID: 29522402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voice Navigation Created by VIP Improves Spatial Performance in People with Impaired Vision.
    Hung YH; Tsai KY; Chang E; Chen R
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Indoor Wayfinding System Based on Geometric Features Aided Graph SLAM for the Visually Impaired.
    Zhang H; Ye C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1592-1604. PubMed ID: 28320671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
    Kim Y; Harders M; Gassert R
    IEEE Trans Haptics; 2015; 8(3):298-305. PubMed ID: 25807569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An experimental study on target recognition using white canes.
    Nunokawa K; Ino S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6583-6. PubMed ID: 21096512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Navigation System for the Visually Impaired: A Fusion of Vision and Depth Sensor.
    Kanwal N; Bostanci E; Currie K; Clark AF
    Appl Bionics Biomech; 2015; 2015():479857. PubMed ID: 27057135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design, development, and clinical evaluation of the electronic mobility cane for vision rehabilitation.
    Bhatlawande S; Mahadevappa M; Mukherjee J; Biswas M; Das D; Gupta S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1148-59. PubMed ID: 24860035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "RecognizeCane" : The new concept of a cane which recognizes the most common objects and safety clues.
    Scherlen AC; Dumas JC; Guedj B; Vignot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6357-60. PubMed ID: 18003475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical evaluation of semiautonomous smart wheelchair architecture (Drive-Safe System) with visually impaired individuals.
    Sharma V; Simpson RC; LoPresti EF; Schmeler M
    J Rehabil Res Dev; 2012; 49(1):35-50. PubMed ID: 22492336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drop-off detection with the long cane: effect of cane shaft weight and rigidity on performance.
    Kim DS; Wall Emerson R; Naghshineh K; Auer A
    Ergonomics; 2017 Jan; 60(1):59-68. PubMed ID: 27065052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-Cost Open Source Ultrasound-Sensing Based Navigational Support for the Visually Impaired.
    Petsiuk AL; Pearce JM
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.