These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17271411)

  • 61. Obstacle Detection with the Long Cane: Effect of Cane Tip Design and Technique Modification on Performance.
    Kim DS; Emerson RW
    J Vis Impair Blind; 2018; 112(5):435-446. PubMed ID: 30923414
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preferred walking speed for assessment of mobility performance: sighted guide versus non-sighted guide techniques.
    Soong GP; Lovie-Kitchin JE; Brown B
    Clin Exp Optom; 2000; 83(5):279-282. PubMed ID: 12472432
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Navigation system for visual impaired persons based on satellital location.
    Perez-Ponce H; Hernandez-Rodriguez PR
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4795-8. PubMed ID: 17271383
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Audio Guide for Visually Impaired People Based on Combination of Stereo Vision and Musical Tones.
    Simões WCSS; Silva YMLR; Pio JLS; Jazdi N; F de Lucena V
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Vision-Based Wayfinding System for Visually Impaired People Using Situation Awareness and Activity-Based Instructions.
    Ko E; Kim EY
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28813033
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Calibration of Beacons for Indoor Environments based on a Digital Map and Heuristic Information.
    Gualda D; Ureña J; Alcalá J; Santos C
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736385
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expanding the Detection of Traversable Area with RealSense for the Visually Impaired.
    Yang K; Wang K; Hu W; Bai J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879634
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Weight-Bearing Estimation for Cane Users by Using Onboard Sensors.
    Ballesteros J; Tudela A; Caro-Romero JR; Urdiales C
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691145
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Construction and Analysis of a Novel Wearable Assistive Device for a Visually Impaired Person.
    Akram S; Mahmood A; Ullah I; Mujtabah MT; Yasin AB; Butt AR; Shafique M; Manzoor S
    Appl Bionics Biomech; 2020; 2020():6153128. PubMed ID: 33123217
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multi-Section Sensing and Vibrotactile Perception for Walking Guide of Visually Impaired Person.
    Jeong GY; Yu KH
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420060
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Walking Distance Estimation Using Walking Canes with Inertial Sensors.
    Dang DC; Suh YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342971
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Image Based Location Estimation for Walking Out of Visual Impaired Person.
    Kamasaka K; Kitahara I; Kameda Y
    Stud Health Technol Inform; 2017; 242():709-716. PubMed ID: 28873875
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An Invisible Salient Landmark Approach to Locating Pedestrians for Predesigned Business Card Route of Pedestrian Navigation.
    Fang Z; Jiang Y; Xu H; Shaw SL; Li L; Geng X
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235857
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of cane length and diameter and judgment type on the constant error ratio for estimated height in blindfolded, visually impaired, and sighted participants.
    Huang KC; Leung CY; Wang HF
    Percept Mot Skills; 2010 Apr; 110(2):593-602. PubMed ID: 20499568
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A biomechanical evaluation of visually impaired persons' gait and long-cane mechanics.
    Ramsey VK; Blasch BB; Kita A; Johnson BF
    J Rehabil Res Dev; 1999 Oct; 36(4):323-32. PubMed ID: 10678455
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Body weight support through a walking cane in inexperienced users with knee osteoarthritis.
    Hart J; Hall M; Wrigley TV; Marshall CJ; Bennell KL
    Gait Posture; 2019 Jan; 67():50-56. PubMed ID: 30286316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of cane length on the haptic perception of height.
    Sidaway B; Champagne A; Daigle K; Marcous N; Nadeau A; Pelletier E
    Disabil Rehabil; 2004 Feb; 26(3):157-61. PubMed ID: 14754626
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages.
    Wang SS
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Do traditionally recommended cane lengths equally influence walking in patients after stroke?
    Cha YJ
    Disabil Health J; 2015 Jan; 8(1):136-9. PubMed ID: 25153922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.