These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17271549)

  • 1. Implantable neural probe systems for cortical neuroprostheses.
    Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5344-7. PubMed ID: 17271549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Microscale Implantable Neural Interface (MINI) Probe System.
    Vetter RJ; Miriani RM; Casey BE; Kong K; Hetke JF; Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7341-4. PubMed ID: 17281976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroMEMS: Neural Probe Microtechnologies.
    HajjHassan M; Chodavarapu V; Musallam S
    Sensors (Basel); 2008 Oct; 8(10):6704-6726. PubMed ID: 27873894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects.
    Choi JR; Kim SM; Ryu RH; Kim SP; Sohn JW
    Exp Neurobiol; 2018 Dec; 27(6):453-471. PubMed ID: 30636899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain-Machine Interfaces: W-HERBS.
    Matsushita K; Hirata M; Suzuki T; Ando H; Yoshida T; Ota Y; Sato F; Morris S; Sugata H; Goto T; Yanagisawa T; Yoshimine T
    Front Neurosci; 2018; 12():511. PubMed ID: 30131666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication.
    Weltman A; Yoo J; Meng E
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study for future implantable neural-silicon interface devices.
    Al-Armaghany A; Yu B; Mak T; Tong KF; Sun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3009-15. PubMed ID: 22254974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Chauvière L; Pothof F; Gansel KS; Klon-Lipok J; Aarts AAA; Holzhammer T; Paul O; Singer WJ; Ruther P
    Front Neurosci; 2019; 13():464. PubMed ID: 31164800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Through-polymer, via technology-enabled, flexible, lightweight, and integrated devices for implantable neural probes.
    Zhou C; Tian Y; Li G; Ye Y; Gao L; Li J; Liu Z; Su H; Lu Y; Li M; Zhou Z; Wei X; Qin L; Tao TH; Sun L
    Microsyst Nanoeng; 2024; 10():54. PubMed ID: 38654844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention.
    Zaer H; Deshmukh A; Orlowski D; Fan W; Prouvot PH; Glud AN; Jensen MB; Worm ES; Lukacova S; Mikkelsen TW; Fitting LM; Adler JR; Schneider MB; Jensen MS; Fu Q; Go V; Morizio J; Sørensen JCH; Stroh A
    Front Hum Neurosci; 2021; 15():618626. PubMed ID: 33613212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Probes for Chronic Applications.
    Kook G; Lee SW; Lee HC; Cho IJ; Lee HJ
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces.
    Fiáth R; Hofer KT; Csikós V; Horváth D; Nánási T; Tóth K; Pothof F; Böhler C; Asplund M; Ruther P; Ulbert I
    Biomed Tech (Berl); 2018 Jun; 63(3):301-315. PubMed ID: 29478038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis.
    Kwon YW; Ahn DB; Park YG; Kim E; Lee DH; Kim SW; Lee KH; Kim WY; Hong YM; Koh CS; Jung HH; Chang JW; Lee SY; Park JU
    Sci Adv; 2024 Apr; 10(14):eadn3784. PubMed ID: 38569040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
    Li H; Wang J; Fang Y
    Nanoscale Adv; 2020 Aug; 2(8):3095-3102. PubMed ID: 36134275
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.