These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 17271653)
1. ICA-based classification scheme for EEG-based brain-computer interface: the role of mental practice and concentration skills. Erfanian A; Erfani A Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():235-8. PubMed ID: 17271653 [TBL] [Abstract][Full Text] [Related]
2. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Mahmoudi B; Erfanian A Med Biol Eng Comput; 2006 Nov; 44(11):959-69. PubMed ID: 17028907 [TBL] [Abstract][Full Text] [Related]
3. The effects of mental practice and concentration skills on EEG brain dynamics during motor imagery using independent component analysis. Erfani A; Erfanian A Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():239-42. PubMed ID: 17271654 [TBL] [Abstract][Full Text] [Related]
4. Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher's Criterion-Based Channel Selection. Liu YH; Huang S; Huang YD Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671629 [TBL] [Abstract][Full Text] [Related]
5. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
6. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance. Kang JH; Youn J; Kim SH; Kim J Front Neurosci; 2021; 15():663101. PubMed ID: 34483816 [TBL] [Abstract][Full Text] [Related]
7. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
8. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Siuly ; Li Y; Paul Wen P Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135 [TBL] [Abstract][Full Text] [Related]
9. [Research on the methods for electroencephalogram feature extraction based on blind source separation]. Wang J; Zhang H; Wang L; Xu G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1195-201. PubMed ID: 25868229 [TBL] [Abstract][Full Text] [Related]
10. Defining and quantifying users' mental imagery-based BCI skills: a first step. Lotte F; Jeunet C J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435 [TBL] [Abstract][Full Text] [Related]
11. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121 [TBL] [Abstract][Full Text] [Related]
12. Individually adapted imagery improves brain-computer interface performance in end-users with disability. Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718 [TBL] [Abstract][Full Text] [Related]
13. A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training. Liu Y; Li M; Zhang H; Wang H; Li J; Jia J; Wu Y; Zhang L J Neurosci Methods; 2014 Jan; 222():238-49. PubMed ID: 24280103 [TBL] [Abstract][Full Text] [Related]
14. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery. Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634 [TBL] [Abstract][Full Text] [Related]
15. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808 [TBL] [Abstract][Full Text] [Related]
16. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation. Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506 [TBL] [Abstract][Full Text] [Related]
17. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related]
18. Independent Low-Rank Matrix Analysis-Based Automatic Artifact Reduction Technique Applied to Three BCI Paradigms. Kanoga S; Hoshino T; Asoh H Front Hum Neurosci; 2020; 14():173. PubMed ID: 32581739 [TBL] [Abstract][Full Text] [Related]
19. [Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components]. Kang S; Zhou B; Wu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):208-15. PubMed ID: 29708317 [TBL] [Abstract][Full Text] [Related]
20. Predicting Inter-session Performance of SMR-Based Brain-Computer Interface Using the Spectral Entropy of Resting-State EEG. Zhang R; Xu P; Chen R; Li F; Guo L; Li P; Zhang T; Yao D Brain Topogr; 2015 Sep; 28(5):680-690. PubMed ID: 25788102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]