BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17271906)

  • 1. Use of near-infrared fluorescent dyes in depth resolved spectroscopic optical coherence tomography.
    Xu C; Ye J; Marks DL; Boppart SA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1214-7. PubMed ID: 17271906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography.
    Xu C; Ye J; Marks DL; Boppart SA
    Opt Lett; 2004 Jul; 29(14):1647-9. PubMed ID: 15309847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography.
    Oldenburg AL; Hansen MN; Ralston TS; Wei A; Boppart SA
    J Mater Chem; 2009 Jan; 19():6407. PubMed ID: 20107616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free detection of brain tumors in a 9L gliosarcoma rat model using stimulated Raman scattering-spectroscopic optical coherence tomography.
    Soltani S; Guang Z; Zhang Z; Olson J; Robles F
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34263579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic optical coherence refraction tomography.
    Zhou KC; Qian R; Farsiu S; Izatt JA
    Opt Lett; 2020 Apr; 45(7):2091-2094. PubMed ID: 32236076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms.
    Hermann B; Hofer B; Meier C; Drexler W
    Opt Express; 2009 Dec; 17(26):24162-74. PubMed ID: 20052127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional optical coherence tomography: principles and progress.
    Kim J; Brown W; Maher JR; Levinson H; Wax A
    Phys Med Biol; 2015 May; 60(10):R211-37. PubMed ID: 25951836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.
    Bosschaart N; van Leeuwen TG; Aalders MC; Faber DJ
    Biomed Opt Express; 2013; 4(11):2570-84. PubMed ID: 24298417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography.
    Yi J; Gong J; Li X
    Opt Express; 2009 Jul; 17(15):13157-67. PubMed ID: 19654721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral optical coherence tomography: a novel technique for cornea imaging.
    Kaluzny BJ; Kałuzny JJ; Szkulmowska A; Gorczyńska I; Szkulmowski M; Bajraszewski T; Wojtkowski M; Targowski P
    Cornea; 2006 Sep; 25(8):960-5. PubMed ID: 17102675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic optical coherence tomography at 1200 nm for lipid detection.
    Kuttippurath V; Slijkhuis N; Liu S; van Soest G
    J Biomed Opt; 2023 Sep; 28(9):096002. PubMed ID: 37692562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography.
    Zhang J; Liu J; Wang LM; Li ZY; Yuan Z
    J Biophotonics; 2017 Jun; 10(6-7):878-886. PubMed ID: 27218690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional imaging of dye concentration in tissue phantoms by spectroscopic optical coherence tomography.
    Støren T; Røyset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2005; 10(2):024037. PubMed ID: 15910110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherently broadened, high-repetition-rate laser for stimulated Raman scattering-spectroscopic optical coherence tomography.
    Robles FE; Linnenbank H; Mörz F; Ledwig P; Steinle T; Giessen H
    Opt Lett; 2019 Jan; 44(2):291-294. PubMed ID: 30644883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography.
    Jaedicke V; Agcaer S; Robles FE; Steinert M; Jones D; Goebel S; Gerhardt NC; Welp H; Hofmann MR
    Biomed Opt Express; 2013; 4(12):2945-61. PubMed ID: 24409393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Quantitative comparison of analysis methods for spectroscopic optical coherence tomography".
    Kraszewski M; Trojanowski M; Strąkowski MR
    Biomed Opt Express; 2014 Sep; 5(9):3023-33. PubMed ID: 25401015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography.
    Chong SP; Merkle CW; Leahy C; Radhakrishnan H; Srinivasan VJ
    Biomed Opt Express; 2015 Apr; 6(4):1429-50. PubMed ID: 25909026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography.
    Faber DJ; Mik EG; Aalders MC; van Leeuwen TG
    Opt Lett; 2003 Aug; 28(16):1436-8. PubMed ID: 12943083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-band Fourier domain optical coherence tomography with depth-related compensations.
    Zhang M; Ma L; Yu P
    Biomed Opt Express; 2013 Dec; 5(1):167-82. PubMed ID: 24466485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.