These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 17272127)

  • 1. Neural recording chip with penetrating Si microprobe electrode array by selective vapor-liquid-solid growth method.
    Kawano T; Takao H; Sawada K; Ishida M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2066-9. PubMed ID: 17272127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina.
    Harimoto T; Takei K; Kawano T; Ishihara A; Kawashima T; Kaneko H; Ishida M; Usui S
    Biosens Bioelectron; 2011 Jan; 26(5):2368-75. PubMed ID: 21093247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single 5 μm diameter needle electrode block modules for unit recordings in vivo.
    Sawahata H; Yamagiwa S; Moriya A; Dong T; Oi H; Ando Y; Numano R; Ishida M; Koida K; Kawano T
    Sci Rep; 2016 Oct; 6():35806. PubMed ID: 27779197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and extendible neural stimulation/recording device based on cooperative multi-chip CMOS LSI architecture.
    Tokuda T; Pan YL; Uehara A; Kagawa K; Ohta J; Nunoshita M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4322-5. PubMed ID: 17271261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisite microprobes for neural recordings.
    Blum NA; Carkhuff BG; Charles HK; Edwards RL; Meyer RA
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):68-74. PubMed ID: 2026434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording.
    Kisban S; Herwik S; Seidl K; Rubehn B; Jezzini A; Umiltà MA; Fogassi L; Stieglitz T; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():175-8. PubMed ID: 18001917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel glass microprobe arrays for neural recording.
    Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W
    Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.
    Deku F; Cohen Y; Joshi-Imre A; Kanneganti A; Gardner TJ; Cogan SF
    J Neural Eng; 2018 Feb; 15(1):016007. PubMed ID: 28952963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Impedance Levels on Recording Quality in Flexible Neural Probes.
    Han J; Choi J; Jeong H; Park D; Cheong E; Sung J; Choi HJ
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.
    Kawano T; Harimoto T; Ishihara A; Takei K; Kawashima T; Usui S; Ishida M
    Biosens Bioelectron; 2010 Mar; 25(7):1809-15. PubMed ID: 20089393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential.
    Liu X; Bibineyshvili Y; Robles DA; Boreland AJ; Margolis DJ; Shreiber DI; Zahn JD
    J Microelectromech Syst; 2021; 30(4):569-581. PubMed ID: 34539168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine.
    Steins H; Mierzejewski M; Brauns L; Stumpf A; Kohler A; Heusel G; Corna A; Herrmann T; Jones PD; Zeck G; von Metzen R; Stieglitz T
    Microsyst Nanoeng; 2022; 8():131. PubMed ID: 36568135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-based interconnection cables to integrate with flexible penetrating microelectrode arrays.
    Oh K; Byun D; Kim S
    Biomed Microdevices; 2017 Aug; 19(4):76. PubMed ID: 28842779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio.
    Takei K; Kawano T; Kawashima T; Sawada K; Kaneko H; Ishida M
    Biomed Microdevices; 2010 Feb; 12(1):41-8. PubMed ID: 19757069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
    Angotzi GN; Boi F; Lecomte A; Miele E; Malerba M; Zucca S; Casile A; Berdondini L
    Biosens Bioelectron; 2019 Feb; 126():355-364. PubMed ID: 30466053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
    Tijero M; Gabriel G; Caro J; Altuna A; Hernández R; Villa R; Berganzo J; Blanco FJ; Salido R; Fernández LJ
    Biosens Bioelectron; 2009 Apr; 24(8):2410-6. PubMed ID: 19167206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 100 electrode intracortical array: structural variability.
    Campbell PK; Jones KE; Normann RA
    Biomed Sci Instrum; 1990; 26():161-5. PubMed ID: 2334761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Motion Interference-Insensitive Flexible Dry Electrode.
    Zhang H; Pei W; Chen Y; Guo X; Wu X; Yang X; Chen H
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1136-44. PubMed ID: 26441439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical impedance measurement of a carbon nanotube probe electrode.
    Inaba A; Takei Y; Kan T; Matsumoto K; Shimoyama I
    Nanotechnology; 2012 Dec; 23(48):485302. PubMed ID: 23124171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.