These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 17274046)
1. Dextran or hydroxyethyl starch in spray-freeze-dried trehalose/mannitol microparticles intended as ballistic particulate carriers for proteins. Rochelle C; Lee G J Pharm Sci; 2007 Sep; 96(9):2296-309. PubMed ID: 17274046 [TBL] [Abstract][Full Text] [Related]
2. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. Schiffter H; Condliffe J; Vonhoff S J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207 [TBL] [Abstract][Full Text] [Related]
3. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. Sonner C; Maa YF; Lee G J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840 [TBL] [Abstract][Full Text] [Related]
4. Comminution of carbohydrate and protein microparticles on firing in a ballistic powder injector. Ziegler A; Simon S; Lee G J Pharm Sci; 2010 Dec; 99(12):4917-27. PubMed ID: 20575004 [TBL] [Abstract][Full Text] [Related]
5. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2: drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase. Schiffter H; Lee G J Pharm Sci; 2007 Sep; 96(9):2284-95. PubMed ID: 17523166 [TBL] [Abstract][Full Text] [Related]
6. Application of disaccharides alone and in combination, for the improvement of stability and particle properties of spray-freeze dried IgG. Daneshmand B; Faghihi H; Amini Pouya M; Aghababaie S; Darabi M; Vatanara A Pharm Dev Technol; 2019 Apr; 24(4):439-447. PubMed ID: 30070161 [TBL] [Abstract][Full Text] [Related]
7. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery. Li X; Mansour HM AAPS PharmSciTech; 2011 Dec; 12(4):1420-30. PubMed ID: 22038473 [TBL] [Abstract][Full Text] [Related]
8. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle. Straller G; Lee G Int J Pharm; 2017 Oct; 532(1):444-449. PubMed ID: 28923767 [TBL] [Abstract][Full Text] [Related]
9. Physical and immunogenic stability of spray freeze-dried influenza vaccine powder for pulmonary delivery: comparison of inulin, dextran, or a mixture of dextran and trehalose as protectants. Murugappan S; Patil HP; Kanojia G; ter Veer W; Meijerhof T; Frijlink HW; Huckriede A; Hinrichs WL Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):716-25. PubMed ID: 23933147 [TBL] [Abstract][Full Text] [Related]
10. Spray-Freeze Drying: a Suitable Method for Aerosol Delivery of Antibodies in the Presence of Trehalose and Cyclodextrins. Pouya MA; Daneshmand B; Aghababaie S; Faghihi H; Vatanara A AAPS PharmSciTech; 2018 Jul; 19(5):2247-2254. PubMed ID: 29740758 [TBL] [Abstract][Full Text] [Related]
11. Conception, preparation and properties of functional carrier particles for pulmonary drug delivery. Odziomek M; Sosnowski TR; Gradoń L Int J Pharm; 2012 Aug; 433(1-2):51-9. PubMed ID: 22580211 [TBL] [Abstract][Full Text] [Related]
12. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related]
13. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01. Ingvarsson PT; Schmidt ST; Christensen D; Larsen NB; Hinrichs WL; Andersen P; Rantanen J; Nielsen HM; Yang M; Foged C J Control Release; 2013 May; 167(3):256-64. PubMed ID: 23415813 [TBL] [Abstract][Full Text] [Related]