BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17274767)

  • 1. Estimation of membrane proteins in the human proteome.
    Ahram M; Litou ZI; Fang R; Al-Tawallbeh G
    In Silico Biol; 2006; 6(5):379-86. PubMed ID: 17274767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
    Kahsay RY; Gao G; Liao L
    Bioinformatics; 2005 May; 21(9):1853-8. PubMed ID: 15691854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale proteomic analysis of membrane proteins.
    Ahram M; Springer DL
    Expert Rev Proteomics; 2004 Oct; 1(3):293-302. PubMed ID: 15966826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating transmembrane topology prediction methods for the effect of signal peptide in topology prediction.
    Lao DM; Okuno T; Shimizu T
    In Silico Biol; 2002; 2(4):485-94. PubMed ID: 12611628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MemO: a consensus approach to the annotation of a protein's membrane organization.
    Davis MJ; Zhang F; Yuan Z; Teasdale RD
    In Silico Biol; 2006; 6(5):387-99. PubMed ID: 17274768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics-based consensus prediction of protein retention in a bacterial membrane.
    Tjalsma H; van Dijl JM
    Proteomics; 2005 Nov; 5(17):4472-82. PubMed ID: 16220534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCHM: A bioinformatic resource for high-throughput human mitochondrial proteome searching and comparison.
    Kim T; Kim E; Park SJ; Joo H
    Comput Biol Med; 2009 Aug; 39(8):689-96. PubMed ID: 19541297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies.
    Ikeda M; Arai M; Lao DM; Shimizu T
    In Silico Biol; 2002; 2(1):19-33. PubMed ID: 11808871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined transmembrane topology and signal peptide prediction method.
    Käll L; Krogh A; Sonnhammer EL
    J Mol Biol; 2004 May; 338(5):1027-36. PubMed ID: 15111065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online tools for predicting integral membrane proteins.
    Bigelow H; Rost B
    Methods Mol Biol; 2009; 528():3-23. PubMed ID: 19153681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature-based reappraisal of the Bacillus subtilis exoproteome.
    Tjalsma H
    Proteomics; 2007 Jan; 7(1):73-81. PubMed ID: 17149778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.
    Käll L; Krogh A; Sonnhammer EL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W429-32. PubMed ID: 17483518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins.
    Hiller K; Grote A; Maneck M; Münch R; Jahn D
    Bioinformatics; 2006 Oct; 22(19):2441-3. PubMed ID: 16870933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional annotation of subproteomes in human plasma.
    Ping P; Vondriska TM; Creighton CJ; Gandhi TK; Yang Z; Menon R; Kwon MS; Cho SY; Drwal G; Kellmann M; Peri S; Suresh S; Gronborg M; Molina H; Chaerkady R; Rekha B; Shet AS; Gerszten RE; Wu H; Raftery M; Wasinger V; Schulz-Knappe P; Hanash SM; Paik YK; Hancock WS; States DJ; Omenn GS; Pandey A
    Proteomics; 2005 Aug; 5(13):3506-19. PubMed ID: 16104058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of immobilised pH gradients improves membrane proteomics.
    Chick JM; Haynes PA; Bjellqvist B; Baker MS
    J Proteome Res; 2008 Nov; 7(11):4974-81. PubMed ID: 18837535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human transmembrane proteome.
    Dobson L; Reményi I; Tusnády GE
    Biol Direct; 2015 May; 10():31. PubMed ID: 26018427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.