BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 17275119)

  • 1. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
    Bäumchen C; Knoll A; Husemann B; Seletzky J; Maier B; Dietrich C; Amoabediny G; Büchs J
    J Biotechnol; 2007 Mar; 128(4):868-74. PubMed ID: 17275119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
    Seletzky JM; Noack U; Fricke J; Hahn S; Büchs J
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1297-307. PubMed ID: 16642330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide inhibition of yeast growth in biomass production.
    Chen SL; Gutmains F
    Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering.
    Neuner A; Heinzle E
    Biotechnol J; 2011 Mar; 6(3):318-29. PubMed ID: 21370474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
    Okino S; Suda M; Fujikura K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):449-54. PubMed ID: 18188553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
    Blombach B; Buchholz J; Busche T; Kalinowski J; Takors R
    J Biotechnol; 2013 Dec; 168(4):331-40. PubMed ID: 24140290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved carbon dioxide measurement and its correlation with operating parameters in fermentation processes.
    Dahod SK
    Biotechnol Prog; 1993; 9(6):655-60. PubMed ID: 7764354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production.
    Neysens P; De Vuyst L
    Int J Food Microbiol; 2005 Nov; 105(2):191-202. PubMed ID: 16087265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of dissolved carbon dioxide on the tetracycline biosynthesis process in an industrial fermenter].
    Tikhonov VV; Vandysheva TN; Bogatkov LG; Tarasova SS
    Antibiotiki; 1983 Sep; 28(9):652-5. PubMed ID: 6416156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study.
    Zhu MM; Goyal A; Rank DL; Gupta SK; Vanden Boom T; Lee SS
    Biotechnol Prog; 2005; 21(1):70-7. PubMed ID: 15903242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks.
    Delaunay S; Lapujade P; Engasser JM; Goergen JL
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):333-7. PubMed ID: 12032806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
    Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose].
    Yu BQ; Shen W; Wang ZX; Zhuge J
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):270-4. PubMed ID: 16013488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations.
    Baez A; Flores N; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2009 Sep; 104(1):102-10. PubMed ID: 19452501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.