These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17275193)
1. Involvement of prostaglandin E(2) derived from enteric glial cells in the action of bradykinin in cultured rat myenteric neurons. Murakami M; Ohta T; Otsuguro K; Ito S Neuroscience; 2007 Mar; 145(2):642-53. PubMed ID: 17275193 [TBL] [Abstract][Full Text] [Related]
2. Interleukin-1beta enhances the action of bradykinin in rat myenteric neurons through up-regulation of glial B1 receptor expression. Murakami M; Ohta T; Ito S Neuroscience; 2008 Jan; 151(1):222-31. PubMed ID: 18053651 [TBL] [Abstract][Full Text] [Related]
3. Lipopolysaccharides enhance the action of bradykinin in enteric neurons via secretion of interleukin-1beta from enteric glial cells. Murakami M; Ohta T; Ito S J Neurosci Res; 2009 Jul; 87(9):2095-104. PubMed ID: 19235895 [TBL] [Abstract][Full Text] [Related]
4. The relevance of kalikrein-kinin system via activation of B Soares DM; Santos DR; Rummel C; Ott D; Melo MCC; Roth J; Calixto JB; Souza GEP Neuropharmacology; 2017 Nov; 126():84-96. PubMed ID: 28826826 [TBL] [Abstract][Full Text] [Related]
5. The effect of bradykinin on the electrical activity of rat myenteric neurons. Würner L; Pouokam E; Diener M Eur J Pharmacol; 2014 Sep; 738():158-69. PubMed ID: 24886885 [TBL] [Abstract][Full Text] [Related]
6. Bradykinin (Bk) increases cytosolic calcium in cultured rat myenteric neurons via Bk-2 type receptors coupled to mobilization of extracellular and intracellular sources of calcium: evidence that calcium influx is prostaglandin dependent. Gelperin D; Mann D; del Valle J; Wiley JW J Pharmacol Exp Ther; 1994 Oct; 271(1):507-14. PubMed ID: 7965750 [TBL] [Abstract][Full Text] [Related]
7. Effects of bradykinin B2 receptor stimulation at submucosal ganglia from rat distal colon. Avemary J; Diener M Eur J Pharmacol; 2010 Feb; 627(1-3):295-303. PubMed ID: 19878667 [TBL] [Abstract][Full Text] [Related]
8. Actions of bradykinin on electrical and synaptic behavior of neurones in the myenteric plexus of guinea-pig small intestine. Hu HZ; Liu S; Gao N; Xia Y; Mostafa R; Ren J; Zafirov DH; Wood JD Br J Pharmacol; 2003 Apr; 138(7):1221-32. PubMed ID: 12711622 [TBL] [Abstract][Full Text] [Related]
9. Inflammation modifies the role of cyclooxygenases in the contractile responses of the rat detrusor smooth muscle to kinin agonists. Meini S; Lecci A; Cucchi P; Catalioto RM; Criscuoli M; Maggi CA J Pharmacol Exp Ther; 1998 Oct; 287(1):137-43. PubMed ID: 9765332 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological characterization of canine bradykinin receptors in prostatic culture and in isolated prostate. Srinivasan D; Burbach LR; Daniels DV; Ford AP; Bhattacharya A Br J Pharmacol; 2004 May; 142(2):297-304. PubMed ID: 15155537 [TBL] [Abstract][Full Text] [Related]
11. Characterization of bradykinin receptors in a human osteoblastic cell line. Brechter AB; Lerner UH Regul Pept; 2002 Jan; 103(1):39-51. PubMed ID: 11738247 [TBL] [Abstract][Full Text] [Related]
12. The longitudinal muscle of rat ileum as a sensitive monoreceptor assay for bradykinin B1 receptors. Meini S; Lecci A; Maggi CA Br J Pharmacol; 1996 Apr; 117(8):1619-24. PubMed ID: 8732268 [TBL] [Abstract][Full Text] [Related]
13. Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone-sensitive distal nephron. Zaika O; Mamenko M; O'Neil RG; Pochynyuk O Am J Physiol Renal Physiol; 2011 May; 300(5):F1105-15. PubMed ID: 21325499 [TBL] [Abstract][Full Text] [Related]
14. Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus. Brailoiu E; McGuire M; Shuler SA; Deliu E; Barr JL; Abood ME; Brailoiu GC Neuroscience; 2017 Dec; 365():23-32. PubMed ID: 28951324 [TBL] [Abstract][Full Text] [Related]
15. Intracellular Ca Terashima R; Kimura M; Higashikawa A; Kojima Y; Ichinohe T; Tazaki M; Shibukawa Y J Physiol Sci; 2019 Mar; 69(2):199-209. PubMed ID: 30182285 [TBL] [Abstract][Full Text] [Related]
16. Receptor mediation and nociceptin inhibition of bradykinin-induced plasma extravasation in the knee joint of the rat. Moriyama K; Liu J; Jang Y; Chae YJ; Wang Y; Mitchell J; Grond S; Han X; Xing Y; Xie GX; Pierce Palmer P Inflamm Res; 2009 Dec; 58(12):873-80. PubMed ID: 19544046 [TBL] [Abstract][Full Text] [Related]
17. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. Ifuku M; Färber K; Okuno Y; Yamakawa Y; Miyamoto T; Nolte C; Merrino VF; Kita S; Iwamoto T; Komuro I; Wang B; Cheung G; Ishikawa E; Ooboshi H; Bader M; Wada K; Kettenmann H; Noda M J Neurosci; 2007 Nov; 27(48):13065-73. PubMed ID: 18045900 [TBL] [Abstract][Full Text] [Related]
18. Excitatory effect of bradykinin on intrinsic neurons of the rat heart. Arichi S; Sasaki-Hamada S; Kadoya Y; Ogata M; Ishibashi H Neuropeptides; 2019 Jun; 75():65-74. PubMed ID: 31047706 [TBL] [Abstract][Full Text] [Related]
19. Activation of osteoblastic functions by a mediator of pain, bradykinin. Kondo A; Togari A Biochem Pharmacol; 2004 Oct; 68(7):1423-31. PubMed ID: 15345332 [TBL] [Abstract][Full Text] [Related]
20. Attenuation of persistent experimental pancreatitis pain by a bradykinin b2 receptor antagonist. Chen Q; Vera-Portocarrero LP; Ossipov MH; Vardanyan M; Lai J; Porreca F Pancreas; 2010 Nov; 39(8):1220-5. PubMed ID: 20531238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]