These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17275375)

  • 21. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits.
    El-Saadi MI; Ritchie MW; Davis HE; MacMillan HA
    J Insect Physiol; 2020; 123():104055. PubMed ID: 32380094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae)?
    Colinet H; Hance T; Vernon P; Bouchereau A; Renault D
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):484-92. PubMed ID: 17347005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach.
    Colinet H; Renault D; Javal M; Berková P; Šimek P; Koštál V
    Biochim Biophys Acta; 2016 Nov; 1861(11):1736-1745. PubMed ID: 27542540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Osmotic and ionic homeostasis in insects and vertebrates under extreme influences on water-salt metabolism].
    Natochin IuV; Parnova RG; Shakhmatova EI
    Zh Evol Biokhim Fiziol; 1991; 27(3):301-7. PubMed ID: 1767608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluctuating thermal regime preserves physiological homeostasis and reproductive capacity in Drosophila suzukii.
    Grumiaux C; Andersen MK; Colinet H; Overgaard J
    J Insect Physiol; 2019; 113():33-41. PubMed ID: 30615858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus.
    Kostál V; Vambera J; Bastl J
    J Exp Biol; 2004 Apr; 207(Pt 9):1509-21. PubMed ID: 15037645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial link between the seasonal acquisition of cold-tolerance and desiccation resistance in the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae).
    Williams JB; Ruehl NC; Lee RE
    J Exp Biol; 2004 Dec; 207(Pt 25):4407-14. PubMed ID: 15557026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae).
    Boardman L; Terblanche JS; Sinclair BJ
    J Insect Physiol; 2011 Aug; 57(8):1154-62. PubMed ID: 21575641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal changes of free amino acids and thermal hysteresis in overwintering heteropteran insect, Pyrrhocoris apterus.
    Koštál V; Renault D; Rozsypal J
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Oct; 160(2):245-51. PubMed ID: 21729762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.
    van Dooremalen C; Suring W; Ellers J
    J Insect Physiol; 2011 Sep; 57(9):1267-73. PubMed ID: 21704631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Heat generation, accumulation and dissipation in clusters of the aggregated insects].
    Es'kov EK; Toboev VA
    Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold tolerance of
    Andersen MK; MacMillan HA; Donini A; Overgaard J
    J Exp Biol; 2017 Nov; 220(Pt 22):4261-4269. PubMed ID: 28947500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic CO(2) emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata.
    Yocum GD; Greenlee KJ; Rinehart JP; Bennett MM; Kemp WP
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Dec; 160(4):480-5. PubMed ID: 21854865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concurrent effects of cold and hyperkalaemia cause insect chilling injury.
    MacMillan HA; Baatrup E; Overgaard J
    Proc Biol Sci; 2015 Oct; 282(1817):20151483. PubMed ID: 26468241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-diuretic activity of a CAPA neuropeptide can compromise
    MacMillan HA; Nazal B; Wali S; Yerushalmi GY; Misyura L; Donini A; Paluzzi JP
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30104306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics constrains the evolution of insect population growth rates: "warmer is better".
    Frazier MR; Huey RB; Berrigan D
    Am Nat; 2006 Oct; 168(4):512-20. PubMed ID: 17004222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of ion homeostasis is not the cause of chill coma or impaired dispersal in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae).
    Karsten M; Lebenzon JE; Sinclair BJ; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Mar; 229():40-44. PubMed ID: 30502471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential.
    Andersen MK; Folkersen R; MacMillan HA; Overgaard J
    J Exp Biol; 2017 Feb; 220(Pt 3):487-496. PubMed ID: 27903702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.