These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17275733)

  • 1. Targeting structural flexibility in HIV-1 protease inhibitor binding.
    Hornak V; Simmerling C
    Drug Discov Today; 2007 Feb; 12(3-4):132-8. PubMed ID: 17275733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL; Lin JH; Andrew McCammon J
    Chem Biol Drug Des; 2006 May; 67(5):336-45. PubMed ID: 16784458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs.
    Lunney EA; Hagen SE; Domagala JM; Humblet C; Kosinski J; Tait BD; Warmus JS; Wilson M; Ferguson D; Hupe D
    J Med Chem; 1994 Aug; 37(17):2664-77. PubMed ID: 8064795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL; Carlson HA
    J Am Chem Soc; 2004 Oct; 126(41):13276-81. PubMed ID: 15479081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V
    J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations.
    Ringhofer S; Kallen J; Dutzler R; Billich A; Visser AJ; Scholz D; Steinhauser O; Schreiber H; Auer M; Kungl AJ
    J Mol Biol; 1999 Mar; 286(4):1147-59. PubMed ID: 10047488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H; Duan Z; Luo Q; Shi Y
    Proteins; 1999 Sep; 36(4):462-70. PubMed ID: 10450088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease.
    Todd MJ; Freire E
    Proteins; 1999 Aug; 36(2):147-56. PubMed ID: 10398363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rationale for more diverse inhibitors in competition with substrates in HIV-1 protease.
    Ozer N; Schiffer CA; Haliloglu T
    Biophys J; 2010 Sep; 99(5):1650-9. PubMed ID: 20816079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray crystallographic studies of a series of penicillin-derived asymmetric inhibitors of HIV-1 protease.
    Jhoti H; Singh OM; Weir MP; Cooke R; Murray-Rust P; Wonacott A
    Biochemistry; 1994 Jul; 33(28):8417-27. PubMed ID: 8031777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of structural stress on the flexibility and adaptability of HIV-1 protease.
    Oehme DP; Wilson DJ; Brownlee RT
    J Chem Inf Model; 2011 May; 51(5):1064-73. PubMed ID: 21500830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance.
    Stoffler D; Sanner MF; Morris GM; Olson AJ; Goodsell DS
    Proteins; 2002 Jul; 48(1):63-74. PubMed ID: 12012338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor.
    Hill R
    Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.