BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 17275829)

  • 1. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.
    Gordon KE; Kinnaird CR; Ferris DP
    J Neurophysiol; 2013 Apr; 109(7):1804-14. PubMed ID: 23307949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.
    Kinnaird CR; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):31-7. PubMed ID: 19211321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor adaptation to a powered ankle-foot orthosis depends on control method.
    Cain SM; Gordon KE; Ferris DP
    J Neuroeng Rehabil; 2007 Dec; 4():48. PubMed ID: 18154649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.