BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17275940)

  • 1. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
    Kosourov S; Patrusheva E; Ghirardi ML; Seibert M; Tsygankov A
    J Biotechnol; 2007 Mar; 128(4):776-87. PubMed ID: 17275940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of ferrous iron in Chlamydomonas reinhardtii. Influence of CO2 and anaerobic induction of the reversible hydrogenase.
    Semin BK; Davletshina LN; Novakova AA; Kiseleva TY; Lanchinskaya VY; Aleksandrov AY; Seifulina N; Ivanov II; Seibert M; Rubin AB
    Plant Physiol; 2003 Apr; 131(4):1756-64. PubMed ID: 12692334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.
    Matthew T; Zhou W; Rupprecht J; Lim L; Thomas-Hall SR; Doebbe A; Kruse O; Hankamer B; Marx UC; Smith SM; Schenk PM
    J Biol Chem; 2009 Aug; 284(35):23415-25. PubMed ID: 19478077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNAs in the alga Chlamydomonas reinhardtii are not phylogenetically conserved and play a limited role in responses to nutrient deprivation.
    Voshall A; Kim EJ; Ma X; Yamasaki T; Moriyama EN; Cerutti H
    Sci Rep; 2017 Jul; 7(1):5462. PubMed ID: 28710366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
    Doebbe A; Keck M; La Russa M; Mussgnug JH; Hankamer B; Tekçe E; Niehaus K; Kruse O
    J Biol Chem; 2010 Sep; 285(39):30247-60. PubMed ID: 20581114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation.
    Minaeva E; Zalutskaya Z; Filina V; Ermilova E
    PLoS One; 2017; 12(10):e0186851. PubMed ID: 29049377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Algal Photosynthesis Using a Clark-Type O
    Burgess SJ; Davies C
    Methods Mol Biol; 2024; 2790():121-132. PubMed ID: 38649569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To Divide or Not to Divide? How Deuterium Affects Growth and Division of
    Kselíková V; Zachleder V; Bišová K
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34207920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii.
    Wakao S; Shih PM; Guan K; Schackwitz W; Ye J; Patel D; Shih RM; Dent RM; Chovatia M; Sharma A; Martin J; Wei CL; Niyogi KK
    PLoS Genet; 2021 Sep; 17(9):e1009725. PubMed ID: 34492001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outdoor cultivation and metabolomics exploration of Chlamydomonas engineered for bisabolene production.
    Sawant KR; Sarnaik AP; Singh R; Savvashe P; Baier T; Kruse O; Jutur PP; Lali A; Pandit RA
    Bioresour Technol; 2024 Apr; 398():130513. PubMed ID: 38432540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutualistic bacterium rescues a green alga from an antagonist.
    Carrasco Flores D; Hotter V; Vuong T; Hou Y; Bando Y; Scherlach K; Burgunter-Delamare B; Hermenau R; Komor AJ; Aiyar P; Rose M; Sasso S; Arndt HD; Hertweck C; Mittag M
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2401632121. PubMed ID: 38568970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-splitting-based, sustainable and efficient H
    Nagy V; Podmaniczki A; Vidal-Meireles A; Tengölics R; Kovács L; Rákhely G; Scoma A; Tóth SZ
    Biotechnol Biofuels; 2018; 11():69. PubMed ID: 29560024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance.
    Kliphuis AM; Klok AJ; Martens DE; Lamers PP; Janssen M; Wijffels RH
    J Appl Phycol; 2012 Apr; 24(2):253-266. PubMed ID: 22427720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals.
    Rajpurohit H; Eiteman MA
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36363817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae.
    Grechanik VI; Tsygankov AA
    Biophys Rev; 2022 Aug; 14(4):893-904. PubMed ID: 36124275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions.
    Tanvir RU; Zhang J; Canter T; Chen D; Lu J; Hu Z
    Renew Sustain Energy Rev; 2021 Aug; 146():1-111181. PubMed ID: 34526853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Carbon Fixation Enhanced
    Zhu Z; Cao H; Li X; Rong J; Cao X; Tian J
    Front Bioeng Biotechnol; 2020; 8():603513. PubMed ID: 33511104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production.
    Grechanik V; Romanova A; Naydov I; Tsygankov A
    Photosynth Res; 2020 Mar; 143(3):275-286. PubMed ID: 31897856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii.
    Krishna PS; Morello G; Mamedov F
    J Exp Bot; 2019 Nov; 70(21):6321-6336. PubMed ID: 31504725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omics Application of Bio-Hydrogen Production Through Green Alga
    Xu L; Fan J; Wang Q
    Front Bioeng Biotechnol; 2019; 7():201. PubMed ID: 31497598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.