These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 1727595)
21. Transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in central nervous system cells: effect of YB-1 on expression of the HIV-1 long terminal repeat. Sawaya BE; Khalili K; Amini S J Gen Virol; 1998 Feb; 79 ( Pt 2)():239-46. PubMed ID: 9472608 [TBL] [Abstract][Full Text] [Related]
22. Identification of c-fos-responsive elements downstream of TAR in the long terminal repeat of human immunodeficiency virus type-1. Roebuck KA; Brenner DA; Kagnoff MF J Clin Invest; 1993 Sep; 92(3):1336-48. PubMed ID: 8376588 [TBL] [Abstract][Full Text] [Related]
23. Basal and Tat-transactivated expression from the human immunodeficiency virus type 1 long terminal repeat in human placental trophoblast rules out promoter-enhancer activation as the partial block to viral replication. Zachar V; Ebbesen P; Thomas RA; Zacharova V; Goustin AS J Gen Virol; 1994 Jun; 75 ( Pt 6)():1461-8. PubMed ID: 8207411 [TBL] [Abstract][Full Text] [Related]
24. Tat functions to stimulate the elongation properties of transcription complexes paused by the duplicated TAR RNA element of human immunodeficiency virus 2. García-Martínez LF; Mavankal G; Peters P; Wu-Baer F; Gaynor RB J Mol Biol; 1995 Dec; 254(3):350-63. PubMed ID: 7490754 [TBL] [Abstract][Full Text] [Related]
25. The lytic origin of herpesvirus papio is highly homologous to Epstein-Barr virus ori-Lyt: evolutionary conservation of transcriptional activation and replication signals. Ryon JJ; Fixman ED; Houchens C; Zong J; Lieberman PM; Chang YN; Hayward GS; Hayward SD J Virol; 1993 Jul; 67(7):4006-16. PubMed ID: 8389916 [TBL] [Abstract][Full Text] [Related]
27. USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1. Maekawa T; Sudo T; Kurimoto M; Ishii S Nucleic Acids Res; 1991 Sep; 19(17):4689-94. PubMed ID: 1653950 [TBL] [Abstract][Full Text] [Related]
28. The upstream stimulatory factor binds to and activates the promoter of the rat class I alcohol dehydrogenase gene. Potter JJ; Cheneval D; Dang CV; Resar LM; Mezey E; Yang VW J Biol Chem; 1991 Aug; 266(23):15457-63. PubMed ID: 1869565 [TBL] [Abstract][Full Text] [Related]
29. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat. Bramblett D; Hsu CL; Lozano M; Earnest K; Fabritius C; Dudley J J Virol; 1995 Dec; 69(12):7868-76. PubMed ID: 7494299 [TBL] [Abstract][Full Text] [Related]
30. Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. Verhoef K; Sanders RW; Fontaine V; Kitajima S; Berkhout B J Virol; 1999 Feb; 73(2):1331-40. PubMed ID: 9882338 [TBL] [Abstract][Full Text] [Related]
31. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants. de Arellano ER; Alcamí J; López M; Soriano V; Holguín A Antiviral Res; 2010 Nov; 88(2):152-9. PubMed ID: 20713090 [TBL] [Abstract][Full Text] [Related]
32. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements. Foufelle F; Lepetit N; Bosc D; Delzenne N; Morin J; Raymondjean M; Ferré P Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):521-7. PubMed ID: 7772036 [TBL] [Abstract][Full Text] [Related]
33. The GGTCA palindrome and cognate cellular factors in trans-regulation of human immunodeficiency virus long terminal repeat by herpes simplex virus. Feng CP; Kulka M; Aurelian L J Gen Virol; 1993 Apr; 74 ( Pt 4)():715-23. PubMed ID: 8385697 [TBL] [Abstract][Full Text] [Related]
34. DNA binding factors that bind to the negative regulatory element of the human immunodeficiency virus-1: regulation by nef. Guy B; Acres B; Kieny MP; Lecocq JP J Acquir Immune Defic Syndr (1988); 1990; 3(8):797-809. PubMed ID: 2195154 [TBL] [Abstract][Full Text] [Related]
35. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3. Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530 [TBL] [Abstract][Full Text] [Related]
36. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. Sieweke MH; Tekotte H; Jarosch U; Graf T EMBO J; 1998 Mar; 17(6):1728-39. PubMed ID: 9501094 [TBL] [Abstract][Full Text] [Related]
37. The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat. Lu X; Welsh TM; Peterlin BM J Virol; 1993 Apr; 67(4):1752-60. PubMed ID: 8445708 [TBL] [Abstract][Full Text] [Related]
38. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. Demarchi F; D'Agaro P; Falaschi A; Giacca M J Virol; 1993 Dec; 67(12):7450-60. PubMed ID: 8230466 [TBL] [Abstract][Full Text] [Related]
39. A yeast homolog of the human UEF stimulates transcription from the adenovirus 2 major late promoter in yeast and in mammalian cell-free systems. Moncollin V; Stalder R; Verdier JM; Sentenac A; Egly JM Nucleic Acids Res; 1990 Aug; 18(16):4817-23. PubMed ID: 2204028 [TBL] [Abstract][Full Text] [Related]
40. Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. Naghavi MH; Schwartz S; Sönnerborg A; Vahlne A AIDS Res Hum Retroviruses; 1999 Sep; 15(14):1293-303. PubMed ID: 10505678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]