These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 1727632)
1. The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Koch B; Nielsen VS; Halkier BA; Olsen CE; Møller BL Arch Biochem Biophys; 1992 Jan; 292(1):141-50. PubMed ID: 1727632 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121 [TBL] [Abstract][Full Text] [Related]
3. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. Andersen MD; Busk PK; Svendsen I; Møller BL J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899 [TBL] [Abstract][Full Text] [Related]
4. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Kannangara R; Motawia MS; Hansen NK; Paquette SM; Olsen CE; Møller BL; Jørgensen K Plant J; 2011 Oct; 68(2):287-301. PubMed ID: 21736650 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Saito S; Motawia MS; Olsen CE; Møller BL; Bak S Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904 [TBL] [Abstract][Full Text] [Related]
7. Properties of a microsomal enzyme system from Linum usitatissimum (linen flax) which oxidizes valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Cutler AJ; Sternberg M; Conn EE Arch Biochem Biophys; 1985 Apr; 238(1):272-9. PubMed ID: 3985623 [TBL] [Abstract][Full Text] [Related]
8. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach. Díaz-Sobac R; Vázquez-Luna A; Rivadeneyra-Domínguez E; Rodríguez-Landa JF; Guerrero T; Durand-Niconoff JS J Mol Model; 2019 Sep; 25(9):295. PubMed ID: 31478108 [TBL] [Abstract][Full Text] [Related]
9. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center. Keresztessy Z; Kiss L; Hughes MA Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386 [TBL] [Abstract][Full Text] [Related]
12. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799 [TBL] [Abstract][Full Text] [Related]
13. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Siritunga D; Sayre R Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626 [TBL] [Abstract][Full Text] [Related]
14. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption. Rivadeneyra-Domínguez E; Vázquez-Luna A; Rodríguez-Landa JF; Díaz-Sobac R Food Chem Toxicol; 2013 Sep; 59():230-5. PubMed ID: 23778051 [TBL] [Abstract][Full Text] [Related]
15. The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. Halkier BA; Møller BL J Biol Chem; 1990 Dec; 265(34):21114-21. PubMed ID: 2250015 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes. Nielsen JS; Moller BL Arch Biochem Biophys; 1999 Aug; 368(1):121-30. PubMed ID: 10415119 [TBL] [Abstract][Full Text] [Related]
17. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Easson MLAE; Malka O; Paetz C; Hojná A; Reichelt M; Stein B; van Brunschot S; Feldmesser E; Campbell L; Colvin J; Winter S; Morin S; Gershenzon J; Vassão DG Sci Rep; 2021 Jun; 11(1):13244. PubMed ID: 34168179 [TBL] [Abstract][Full Text] [Related]
18. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. Du L; Lykkesfeldt J; Olsen CE; Halkier BA Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12505-9. PubMed ID: 8618930 [TBL] [Abstract][Full Text] [Related]
19. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Li B; Knudsen C; Hansen NK; Jørgensen K; Kannangara R; Bak S; Takos A; Rook F; Hansen SH; Møller BL; Janfelt C; Bjarnholt N Plant J; 2013 Jun; 74(6):1059-71. PubMed ID: 23551340 [TBL] [Abstract][Full Text] [Related]
20. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Kamalu BP Int J Food Sci Nutr; 1995 Feb; 46(1):65-93. PubMed ID: 7712344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]