BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 17276416)

  • 1. GABAergic circuits and the stress hyporesponsive period in the rat: ontogeny of glutamic acid decarboxylase (GAD) 67 mRNA expression in limbic-hypothalamic stress pathways.
    Dent G; Choi DC; Herman JP; Levine S
    Brain Res; 2007 Mar; 1138():1-9. PubMed ID: 17276416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of forebrain GABAergic stress circuits following lesion of the ventral subiculum.
    Mueller NK; Dolgas CM; Herman JP
    Brain Res; 2006 Oct; 1116(1):132-42. PubMed ID: 16979601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits.
    Bowers G; Cullinan WE; Herman JP
    J Neurosci; 1998 Aug; 18(15):5938-47. PubMed ID: 9671680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus.
    Freichel C; Potschka H; Ebert U; Brandt C; Löscher W
    Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice.
    Bali B; Erdélyi F; Szabó G; Kovács KJ
    Neurosci Lett; 2005 May 20-27; 380(1-2):60-5. PubMed ID: 15854751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic neurons in the lateral superior olive of the hamster are distinguished by differential expression of gad isoforms during development.
    Jenkins SA; Simmons DD
    Brain Res; 2006 Sep; 1111(1):12-25. PubMed ID: 16919247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs.
    Choi DC; Furay AR; Evanson NK; Ostrander MM; Ulrich-Lai YM; Herman JP
    J Neurosci; 2007 Feb; 27(8):2025-34. PubMed ID: 17314298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: an immunohistochemical and in situ hybridization study.
    Löscher W; Schirmer M; Freichel C; Gernert M
    Brain Res; 2006 Apr; 1083(1):50-60. PubMed ID: 16545783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of forebrain glutamic acid decarboxylase mRNA expression by aging and stress.
    Herman JP; Larson BR
    Brain Res; 2001 Aug; 912(1):60-6. PubMed ID: 11520493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic regulation of the GABAergic transmission in the rat basal ganglia.
    Di Cara B; Samuel D; Salin P; Kerkerian-Le Goff L; Daszuta A
    Synapse; 2003 Nov; 50(2):144-50. PubMed ID: 12923817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamic acid decarboxylase 65, 67, and GABA-transaminase mRNA expression and total enzyme activity in the goldfish (Carassius auratus) brain.
    Martyniuk CJ; Awad R; Hurley R; Finger TE; Trudeau VL
    Brain Res; 2007 May; 1147():154-66. PubMed ID: 17362888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods.
    Esclapez M; Tillakaratne NJ; Tobin AJ; Houser CR
    J Comp Neurol; 1993 May; 331(3):339-62. PubMed ID: 8514913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex steroid regulation of brain glutamic acid decarboxylase (GAD) mRNA is season-dependent and sexually dimorphic in the goldfish Carassius auratus.
    Larivière K; Samia M; Lister A; Van Der Kraak G; Trudeau VL
    Brain Res Mol Brain Res; 2005 Nov; 141(1):1-9. PubMed ID: 16226340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limbic and HPA axis function in an animal model of chronic neuropathic pain.
    Ulrich-Lai YM; Xie W; Meij JT; Dolgas CM; Yu L; Herman JP
    Physiol Behav; 2006 Jun; 88(1-2):67-76. PubMed ID: 16647726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pre- and postnatal corticosterone exposure on the rat hippocampal GABA system.
    Stone DJ; Walsh JP; Sebro R; Stevens R; Pantazopolous H; Benes FM
    Hippocampus; 2001; 11(5):492-507. PubMed ID: 11732703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy.
    Esclapez M; Houser CR
    J Comp Neurol; 1999 Sep; 412(3):488-505. PubMed ID: 10441235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term effects of a single exposure to immobilization: a c-fos mRNA study of the response to the homotypic stressor in the rat brain.
    Vallès A; Martí O; Armario A
    J Neurobiol; 2006 May; 66(6):591-602. PubMed ID: 16555238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary exercise alters GABA(A) receptor subunit and glutamic acid decarboxylase-67 gene expression in the rat forebrain.
    Hill LE; Droste SK; Nutt DJ; Linthorst AC; Reul JM
    J Psychopharmacol; 2010 May; 24(5):745-56. PubMed ID: 18801833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamic acid decarboxylase 67 (GAD67) gene expression in discrete regions of the rostral preoptic area change during the oestrous cycle and with age.
    Cashion AB; Smith MJ; Wise PM
    J Neuroendocrinol; 2004 Aug; 16(8):711-6. PubMed ID: 15271064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration.
    Herman JP; Mueller NK; Figueiredo H
    Ann N Y Acad Sci; 2004 Jun; 1018():35-45. PubMed ID: 15240350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.