These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1727642)

  • 1. Kinetics of inhibition of peptide bond formation on bacterial ribosomes.
    Theocharis DA; Synetos D; Kalpaxis DL; Drainas D; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1992 Jan; 292(1):266-72. PubMed ID: 1727642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ribosomal peptidyltransferase by chloramphenicol. Kinetic studies.
    Drainas D; Kalpaxis DL; Coutsogeorgopoulos C
    Eur J Biochem; 1987 Apr; 164(1):53-8. PubMed ID: 3549307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies on the interaction between a ribosomal complex active in peptide bond formation and the macrolide antibiotics tylosin and erythromycin.
    Dinos GP; Kalpaxis DL
    Biochemistry; 2000 Sep; 39(38):11621-8. PubMed ID: 10995229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoacyl analogs of chloramphenicol: examination of the kinetics of inhibition of peptide bond formation.
    Drainas D; Mamos P; Coutsogeorgopoulos C
    J Med Chem; 1993 Nov; 36(23):3542-5. PubMed ID: 8246222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat and ionic limitations do not change the inhibition pattern of ribosomal peptidyltransferase by aminohexosyl-cytosine nucleoside antibiotics.
    Dinos GP; Kalpaxis DL
    Pharmazie; 1997 Nov; 52(11):875-7. PubMed ID: 9399344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the peptide bond synthesizing cycle by chloramphenicol.
    Weber MJ; DeMoss JA
    J Bacteriol; 1969 Mar; 97(3):1099-105. PubMed ID: 4887499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the antibiotic spiramycin and a ribosomal complex active in peptide bond formation.
    Dinos G; Synetos D; Coutsogeorgopoulos C
    Biochemistry; 1993 Oct; 32(40):10638-47. PubMed ID: 8399209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type of inhibition of peptide bond formation by chloramphenicol depends on the temperature and the concentration of ammonium ions.
    Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1989 Oct; 36(4):615-9. PubMed ID: 2682205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyamines on the inhibition of peptidyltransferase by antibiotics: revisiting the mechanism of chloramphenicol action.
    Xaplanteri MA; Andreou A; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2003 Sep; 31(17):5074-83. PubMed ID: 12930958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release.
    Youngman EM; Brunelle JL; Kochaniak AB; Green R
    Cell; 2004 May; 117(5):589-99. PubMed ID: 15163407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines affect diversely the antibiotic potency: insight gained from kinetic studies of the blasticidin S AND spiramycin interactions with functional ribosomes.
    Petropoulos AD; Xaplanteri MA; Dinos GP; Wilson DN; Kalpaxis DL
    J Biol Chem; 2004 Jun; 279(25):26518-25. PubMed ID: 15075341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 14. Slow-onset inhibition of ribosomal peptidyltransferase by lincomycin.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1992 Nov; 298(2):332-9. PubMed ID: 1416965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of spermine on ribosomal peptidyltransferase.
    Kalpaxis DL; Drainas D
    Arch Biochem Biophys; 1993 Feb; 300(2):629-34. PubMed ID: 8434942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems.
    Yamaguchi H; Tanaka N
    J Biochem; 1966 Dec; 60(6):632-42. PubMed ID: 4860846
    [No Abstract]   [Full Text] [Related]  

  • 17. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol.
    Rheinberger HJ; Nierhaus KH
    Eur J Biochem; 1990 Nov; 193(3):643-50. PubMed ID: 2249685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of the kinetics of inhibition by lincomycin of peptide bond formation.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1994 Nov; 46(5):1009-14. PubMed ID: 7969063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):539-47. PubMed ID: 323015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes.
    Goldberg IH; Mitsugi K
    Biochemistry; 1967 Feb; 6(2):383-91. PubMed ID: 4860147
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.