These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 1727652)
21. Glutathione-dependent factors and inhibition of rat liver microsomal lipid peroxidation. Scholz RW; Reddy PV; Wynn MK; Graham KS; Liken AD; Gumpricht E; Reddy CC Free Radic Biol Med; 1997; 23(5):815-28. PubMed ID: 9296460 [TBL] [Abstract][Full Text] [Related]
22. [Inhibition of phospholipid hydrolysis by phospholipase A2 in microsomal and mitochondrial membranes subjected to lipid peroxidation]. Balevska PS; Kassabova EM; Rusanov EM; Kagan VE Biull Eksp Biol Med; 1985 Feb; 99(2):161-4. PubMed ID: 3971034 [TBL] [Abstract][Full Text] [Related]
23. The possible role of phospholipase A2 in hepatic microsomal lipid peroxidation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. al-Bayati ZA; Stohs SJ Arch Environ Contam Toxicol; 1991 Apr; 20(3):361-5. PubMed ID: 1859207 [TBL] [Abstract][Full Text] [Related]
24. A possible mechanism for initiation of lipid peroxidation by ascorbate in rat liver microsomes. Casalino E; Sblano C; Landriscina C Int J Biochem Cell Biol; 1996 Feb; 28(2):137-49. PubMed ID: 8729001 [TBL] [Abstract][Full Text] [Related]
25. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers. Mimnaugh EG; Gram TE; Trush MA J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900 [TBL] [Abstract][Full Text] [Related]
26. The role of phospholipase A activity in rat liver microsomal lipid peroxidation. Beckman JK; Borowitz SM; Burr IM J Biol Chem; 1987 Feb; 262(4):1479-84. PubMed ID: 3805035 [TBL] [Abstract][Full Text] [Related]
27. The mechanism of liver microsomal lipid peroxidation. Pederson TC; Aust SD Biochim Biophys Acta; 1975 Apr; 385(2):232-41. PubMed ID: 236006 [TBL] [Abstract][Full Text] [Related]
28. Microsomal membrane peroxidation by an Fe3+/paraquat system. Consequences of phenobarbital induction. Fernandez Y; Subirade I; Anglade F; Periquet A; Mitjavila S Biol Trace Elem Res; 1995; 47(1-3):9-15. PubMed ID: 7779580 [TBL] [Abstract][Full Text] [Related]
29. NADPH-dependent inhibition of lipid peroxidation in rat liver microsomes. Kagan VE; Serbinova EA; Safadi A; Catudioc JD; Packer L Biochem Biophys Res Commun; 1992 Jul; 186(1):74-80. PubMed ID: 1632795 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo studies of the effect of vitamin E on microsomal cytochrome P450 in rat liver. Murray M Biochem Pharmacol; 1991 Nov; 42(11):2107-14. PubMed ID: 1958229 [TBL] [Abstract][Full Text] [Related]
31. Loss of latent activity of liver microsomal membrane enzymes evoked by lipid peroxidation. Studies of nucleoside diphosphatase, glucose-6-phosphatase, and UDP glucuronyltransferase. de Groot H; Noll T; Tölle T Biochim Biophys Acta; 1985 Apr; 815(1):91-6. PubMed ID: 2985117 [TBL] [Abstract][Full Text] [Related]
32. Development of the cytosolic defence system against microsomal lipid peroxidation in rat liver. Fairhurst S; Barber DJ; Clark B; Horton AA Biochim Biophys Acta; 1983 Aug; 752(3):491-6. PubMed ID: 6409152 [TBL] [Abstract][Full Text] [Related]
33. The effects of aspirin, indomethacin and their copper complexes on phospholipase activity and on lipid peroxidation in rat liver microsomes. Russanov EM; Dimitrova DE; Ivancheva EA; Kirkova MD Acta Physiol Pharmacol Bulg; 1986; 12(1):36-43. PubMed ID: 3751624 [TBL] [Abstract][Full Text] [Related]
34. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E; Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554 [TBL] [Abstract][Full Text] [Related]
35. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E; Cederbaum AI Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215 [TBL] [Abstract][Full Text] [Related]
36. Relationship between malondialdehyde production and arachidonate consumption during NADPH-supported microsomal lipid peroxidation. Jordan RA; Schenkman JB Biochem Pharmacol; 1982 Apr; 31(7):1393-400. PubMed ID: 6807321 [TBL] [Abstract][Full Text] [Related]
37. The role of phospholipase A2 in microsomal lipid peroxidation induced with t-butyl hydroperoxide. Borowitz SM; Montgomery C Biochem Biophys Res Commun; 1989 Feb; 158(3):1021-8. PubMed ID: 2920033 [TBL] [Abstract][Full Text] [Related]
38. A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation. Minakami H; Arai H; Nakano M; Sugioka K; Suzuki S; Sotomatsu A Biochem Biophys Res Commun; 1988 Jun; 153(3):973-8. PubMed ID: 2839175 [TBL] [Abstract][Full Text] [Related]
39. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Soucek P; Ivan G; Pavel S Chem Biol Interact; 2000 Apr; 126(1):45-61. PubMed ID: 10826653 [TBL] [Abstract][Full Text] [Related]
40. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Sevanian A; Muakkassah-Kelly SF; Montestruque S Arch Biochem Biophys; 1983 Jun; 223(2):441-52. PubMed ID: 6859870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]