These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17276595)

  • 1. The hindering effect of experimental strategies on advancement of alkaline front and electroosmotic flow during electrokinetic lake sediment treatment.
    Virkutyte J; Sillanpää M
    J Hazard Mater; 2007 May; 143(3):673-81. PubMed ID: 17276595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic flow behaviour of metal contaminated expansive soil.
    Sivapullaiah PV; Prakash BS
    J Hazard Mater; 2007 May; 143(3):682-9. PubMed ID: 17276001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxypropyl-beta-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals.
    Li T; Yuan S; Wan J; Lu X
    J Hazard Mater; 2010 Apr; 176(1-3):306-12. PubMed ID: 19962239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic.
    Buchireddy PR; Bricka RM; Gent DB
    J Hazard Mater; 2009 Feb; 162(1):490-7. PubMed ID: 18599200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.
    Zhou DM; Deng CF; Cang L
    Chemosphere; 2004 Jul; 56(3):265-73. PubMed ID: 15172599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process.
    Altaee A; Smith R; Mikhalovsky S
    J Environ Manage; 2008 Sep; 88(4):1611-8. PubMed ID: 17913333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes.
    Maldonado-Reyes A; Montero-Ocampo C; Solorza-Feria O
    J Environ Monit; 2007 Nov; 9(11):1241-7. PubMed ID: 17968451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ removal of copper from sediments by a galvanic cell.
    Yuan S; Wu C; Wan J; Lu X
    J Environ Manage; 2009 Jan; 90(1):421-7. PubMed ID: 18079044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodialytic remediation of harbour sediment in suspension--evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH.
    Kirkelund GM; Ottosen LM; Villumsen A
    J Hazard Mater; 2009 Sep; 169(1-3):685-90. PubMed ID: 19409702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents.
    Yuan C; Chiang TS
    J Hazard Mater; 2008 Mar; 152(1):309-15. PubMed ID: 17697749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desorption characteristics of kaolin clay contaminated with zinc from electrokinetic soil processing.
    Lee MH; Kamon M; Kim SS; Lee JY; Chung HI
    Environ Geochem Health; 2007 Aug; 29(4):281-8. PubMed ID: 17530420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient behavior of heavy metals in soils during electrokinetic remediation.
    Al-Hamdan AZ; Reddy KR
    Chemosphere; 2008 Mar; 71(5):860-71. PubMed ID: 18155269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte.
    Zhou DM; Alshawabkeh AN; Deng CF; Cang L; Si YB
    J Environ Sci (China); 2004; 16(4):529-32. PubMed ID: 15495949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes.
    Shen Z; Chen X; Jia J; Qu L; Wang W
    Environ Pollut; 2007 Nov; 150(2):193-9. PubMed ID: 17376568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2006 Aug; 136(3):532-41. PubMed ID: 16504386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-Fenton, hydrogenotrophic and Fe2+ ions mediated TOC and nitrate removal from aquaculture system: different experimental strategies.
    Virkutyte J; Jegatheesan V
    Bioresour Technol; 2009 Apr; 100(7):2189-97. PubMed ID: 19070482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal release from bottom sediments of Ocoee Lake No. 3, a primary catchment area for the Ducktown Mining District.
    Lee G; Faure G; Bigham JM; Williams DJ
    J Environ Qual; 2008; 37(2):344-52. PubMed ID: 18268296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously.
    Zhou DM; Zorn R; Kurt C
    J Environ Sci (China); 2003 May; 15(3):396-400. PubMed ID: 12938993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use.
    Matsumoto N; Uemoto H; Saiki H
    Water Res; 2007 Jun; 41(12):2541-50. PubMed ID: 17475304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.