BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 1727686)

  • 1. Gentamicin effects on renal ischemia/reperfusion injury.
    Zager RA
    Circ Res; 1992 Jan; 70(1):20-8. PubMed ID: 1727686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence against increased hydroxyl radical production during oxygen deprivation-reoxygenation proximal tubular injury.
    Zager RA; Gmur DJ; Schimpf BA; Bredl CR; Foerder CA
    J Am Soc Nephrol; 1992 May; 2(11):1627-33. PubMed ID: 1319220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brief intermittent reperfusion during renal ischemia: effects on adenine nucleotides, oxidant stress, and the severity of renal failure.
    Thornton MA; Zager RA
    J Lab Clin Med; 1990 May; 115(5):564-71. PubMed ID: 2341758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermia: effects on renal ischemic/reperfusion injury in the rat.
    Zager RA
    Lab Invest; 1990 Sep; 63(3):360-9. PubMed ID: 2395331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase A2: a potentially important determinant of adenosine triphosphate levels during hypoxic-reoxygenation tubular injury.
    Zager RA; Conrad DS; Burkhart K
    J Am Soc Nephrol; 1996 Nov; 7(11):2327-39. PubMed ID: 8959622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-ischemic acute renal failure protects proximal tubules from O2 deprivation injury, possibly by inducing uremia.
    Zager RA; Iwata M; Burkhart KM; Schimpf BA
    Kidney Int; 1994 Jun; 45(6):1760-8. PubMed ID: 7933824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence against oxidant injury as a critical mediator of postischemic acute renal failure.
    Gamelin LM; Zager RA
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F450-60. PubMed ID: 3414803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol ester accumulation: an immediate consequence of acute in vivo ischemic renal injury.
    Zager RA; Johnson A; Anderson K; Wright S
    Kidney Int; 2001 May; 59(5):1750-61. PubMed ID: 11318945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild ischemia predisposes the S3 segment to gentamicin toxicity.
    Spiegel DM; Shanley PF; Molitoris BA
    Kidney Int; 1990 Sep; 38(3):459-64. PubMed ID: 2232488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite effects of pre- and postischemic treatments with nitric oxide donor on ischemia/reperfusion-induced renal injury.
    Nakajima A; Ueda K; Takaoka M; Yoshimi Y; Matsumura Y
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1038-46. PubMed ID: 16306274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure.
    Zager RA; Iwata M; Conrad DS; Burkhart KM; Igarashi Y
    Kidney Int; 1997 Jul; 52(1):60-70. PubMed ID: 9211347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat.
    Chatterjee PK; Cuzzocrea S; Brown PA; Zacharowski K; Stewart KN; Mota-Filipe H; Thiemermann C
    Kidney Int; 2000 Aug; 58(2):658-73. PubMed ID: 10916089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature effects on ischemic and hypoxic renal proximal tubular injury.
    Zager RA; Gmur DJ; Bredl CR; Eng MJ
    Lab Invest; 1991 Jun; 64(6):766-76. PubMed ID: 2046328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postischemic proximal tubular resistance to oxidant stress and Ca2+ ionophore-induced attack. Implications for reperfusion injury.
    Zager RA; Burkhart KM; Gmur DJ
    Lab Invest; 1995 May; 72(5):592-600. PubMed ID: 7745953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion.
    Persy VP; Verstrepen WA; Ysebaert DK; De Greef KE; De Broe ME
    Kidney Int; 1999 Aug; 56(2):601-11. PubMed ID: 10432399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity.
    Humes HD; Sastrasinh M; Weinberg JM
    J Clin Invest; 1984 Jan; 73(1):134-47. PubMed ID: 6690474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gentamicin nephrotoxicity in the setting of acute renal hypoperfusion.
    Zager RA
    Am J Physiol; 1988 Apr; 254(4 Pt 2):F574-81. PubMed ID: 3354687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degree and time sequence of hypothermic protection against experimental ischemic acute renal failure.
    Zager RA; Gmur DJ; Bredl CR; Eng MJ
    Circ Res; 1989 Nov; 65(5):1263-9. PubMed ID: 2805243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen metabolites in toxic acute renal failure.
    Shah SV; Walker PD
    Ren Fail; 1992; 14(3):363-70. PubMed ID: 1324513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urinary excretion and tissue accumulation of gentamicin and paraaminohippurate in postischemic rat kidneys.
    Chiu PJ; Long JF
    Kidney Int; 1979 Jun; 15(6):618-23. PubMed ID: 459244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.