These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17277006)

  • 1. The creation of a novel fluorescent protein by guided consensus engineering.
    Dai M; Fisher HE; Temirov J; Kiss C; Phipps ME; Pavlik P; Werner JH; Bradbury AR
    Protein Eng Des Sel; 2007 Feb; 20(2):69-79. PubMed ID: 17277006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, "dimer2", and DsRed1.
    Stepanenko OV; Verkhusha VV; Kazakov VI; Shavlovsky MM; Kuznetsova IM; Uversky VN; Turoverov KK
    Biochemistry; 2004 Nov; 43(47):14913-23. PubMed ID: 15554698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of an extremely stable fluorescent protein.
    Kiss C; Temirov J; Chasteen L; Waldo GS; Bradbury AR
    Protein Eng Des Sel; 2009 May; 22(5):313-23. PubMed ID: 19364809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization.
    Hoi H; Shaner NC; Davidson MW; Cairo CW; Wang J; Campbell RE
    J Mol Biol; 2010 Sep; 401(5):776-91. PubMed ID: 20603133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denaturation studies reveal significant differences between GFP and blue fluorescent protein.
    Saeed IA; Ashraf SS
    Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of quarternary structure in fluorescent protein stability].
    Stepanenko OV; Verkhusha VV; Shavlovskiĭ MM; Aleĭnikova TD; Uverskiĭ VN; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2005; 47(11):1017-27. PubMed ID: 16706203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed armadillo repeat proteins as general peptide-binding scaffolds: consensus design and computational optimization of the hydrophobic core.
    Parmeggiani F; Pellarin R; Larsen AP; Varadamsetty G; Stumpp MT; Zerbe O; Caflisch A; Plückthun A
    J Mol Biol; 2008 Mar; 376(5):1282-304. PubMed ID: 18222472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells.
    Kremers GJ; Goedhart J; van den Heuvel DJ; Gerritsen HC; Gadella TW
    Biochemistry; 2007 Mar; 46(12):3775-83. PubMed ID: 17323929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of a monomeric fluorescent protein AsGFP499 and its applications in a dual translocation and transcription assay.
    Tasdemir A; Khan F; Jowitt TA; Iuzzolino L; Lohmer S; Corazza S; Schmidt TJ
    Protein Eng Des Sel; 2008 Oct; 21(10):613-22. PubMed ID: 18676975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells.
    Kaida A; Miura M
    Biochem Biophys Res Commun; 2012 May; 421(4):855-9. PubMed ID: 22554525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2.
    Adam V; Nienhaus K; Bourgeois D; Nienhaus GU
    Biochemistry; 2009 Jun; 48(22):4905-15. PubMed ID: 19371086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a circularly permuted GFP scaffold for peptide presentation.
    Paschke M; Tiede C; Höhne W
    J Mol Recognit; 2007; 20(5):367-78. PubMed ID: 17918771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes.
    Steipe B
    Methods Enzymol; 2004; 388():176-86. PubMed ID: 15289071
    [No Abstract]   [Full Text] [Related]  

  • 14. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission.
    Ebisawa T; Yamamura A; Kameda Y; Hayakawa K; Nagata K; Tanokura M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 May; 66(Pt 5):485-9. PubMed ID: 20445241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fluorescent proteins: physical-chemical properties and application in cell biology].
    Stepanenko OV; Verkhusha VV; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2007; 49(5):395-420. PubMed ID: 17654827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescent proteins.
    Dobbie IM; Lowndes NF; Sullivan KF
    Methods Cell Biol; 2008; 85():1-22. PubMed ID: 18155456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments.
    Interlandi G; Wetzel SK; Settanni G; Plückthun A; Caflisch A
    J Mol Biol; 2008 Jan; 375(3):837-54. PubMed ID: 18048057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus design of repeat proteins.
    Forrer P; Binz HK; Stumpp MT; Plückthun A
    Chembiochem; 2004 Feb; 5(2):183-9. PubMed ID: 14760739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus engineering of sucrose phosphorylase: the outcome reflects the sequence input.
    Aerts D; Verhaeghe T; Joosten HJ; Vriend G; Soetaert W; Desmet T
    Biotechnol Bioeng; 2013 Oct; 110(10):2563-72. PubMed ID: 23613221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ProteinParser--a community based tool for the generation of a detailed protein consensus and FASTA output.
    Ryan BJ; Barrett R
    Comput Methods Programs Biomed; 2007 Jan; 85(1):69-76. PubMed ID: 17079048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.