These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of NpgA, a 4'-phosphopantetheinyl transferase of Aspergillus nidulans, and evidence of its involvement in fungal growth and formation of conidia and cleistothecia for development. Kim JM; Song HY; Choi HJ; So KK; Kim DH; Chae KS; Han DM; Jahng KY J Microbiol; 2015 Jan; 53(1):21-31. PubMed ID: 25557478 [TBL] [Abstract][Full Text] [Related]
3. The npgA/ cfwA gene encodes a putative 4'-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Keszenman-Pereyra D; Lawrence S; Twfieg ME; Price J; Turner G Curr Genet; 2003 Jun; 43(3):186-90. PubMed ID: 12664133 [TBL] [Abstract][Full Text] [Related]
4. 4'-phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Oberegger H; Eisendle M; Schrettl M; Graessle S; Haas H Curr Genet; 2003 Dec; 44(4):211-5. PubMed ID: 14508603 [TBL] [Abstract][Full Text] [Related]
5. Sfp-type 4'-phosphopantetheinyl transferase is required for lysine synthesis, tolerance to oxidative stress and virulence in the plant pathogenic fungus Cochliobolus sativus. Leng Y; Zhong S Mol Plant Pathol; 2012 May; 13(4):375-87. PubMed ID: 22023083 [TBL] [Abstract][Full Text] [Related]
6. A Nonredundant Phosphopantetheinyl Transferase, PptA, Is a Novel Antifungal Target That Directs Secondary Metabolite, Siderophore, and Lysine Biosynthesis in Johns A; Scharf DH; Gsaller F; Schmidt H; Heinekamp T; Straßburger M; Oliver JD; Birch M; Beckmann N; Dobb KS; Gilsenan J; Rash B; Bignell E; Brakhage AA; Bromley MJ mBio; 2017 Jul; 8(4):. PubMed ID: 28720735 [TBL] [Abstract][Full Text] [Related]
7. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. García-Estrada C; Ullán RV; Velasco-Conde T; Godio RP; Teijeira F; Vaca I; Feltrer R; Kosalková K; Mauriz E; Martín JF Biochem J; 2008 Oct; 415(2):317-24. PubMed ID: 18558918 [TBL] [Abstract][Full Text] [Related]
8. The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. Wiemann P; Albermann S; Niehaus EM; Studt L; von Bargen KW; Brock NL; Humpf HU; Dickschat JS; Tudzynski B PLoS One; 2012; 7(5):e37519. PubMed ID: 22662164 [TBL] [Abstract][Full Text] [Related]
9. Optimization of heterologous production of the polyketide 6-MSA in Saccharomyces cerevisiae. Wattanachaisaereekul S; Lantz AE; Nielsen ML; Andrésson OS; Nielsen J Biotechnol Bioeng; 2007 Jul; 97(4):893-900. PubMed ID: 17171715 [TBL] [Abstract][Full Text] [Related]
10. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Liu Q; Ma Y; Zhou L; Zhang Y Arch Microbiol; 2005 Jan; 183(1):37-44. PubMed ID: 15551118 [TBL] [Abstract][Full Text] [Related]
11. Identification of a phosphopantetheinyl transferase for erythromycin biosynthesis in Saccharopolyspora erythraea. Weissman KJ; Hong H; Oliynyk M; Siskos AP; Leadlay PF Chembiochem; 2004 Jan; 5(1):116-25. PubMed ID: 14695521 [TBL] [Abstract][Full Text] [Related]
12. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Gerc AJ; Stanley-Wall NR; Coulthurst SJ Microbiology (Reading); 2014 Aug; 160(Pt 8):1609-1617. PubMed ID: 24847000 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores. Wu MY; Mead ME; Lee MK; Neuhaus GF; Adpressa DA; Martien JI; Son YE; Moon H; Amador-Noguez D; Han KH; Rokas A; Loesgen S; Yu JH; Park HS mBio; 2021 Feb; 12(1):. PubMed ID: 33563821 [TBL] [Abstract][Full Text] [Related]
15. Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Jiang H; Wang YY; Ran XX; Fan WM; Jiang XH; Guan WJ; Li YQ Appl Environ Microbiol; 2013 Jun; 79(11):3346-54. PubMed ID: 23524668 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Gallo A; Ferrara M; Perrone G Toxins (Basel); 2013 Apr; 5(4):717-42. PubMed ID: 23604065 [TBL] [Abstract][Full Text] [Related]
17. TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Soid-Raggi G; Sánchez O; Aguirre J Mol Microbiol; 2006 Feb; 59(3):854-69. PubMed ID: 16420356 [TBL] [Abstract][Full Text] [Related]
18. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1. Zainudin NA; Condon B; De Bruyne L; Van Poucke C; Bi Q; Li W; Höfte M; Turgeon BG Mol Plant Microbe Interact; 2015 Oct; 28(10):1130-41. PubMed ID: 26168137 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. Finking R; Solsbacher J; Konz D; Schobert M; Schafer A; Jahn D; Marahiel MA J Biol Chem; 2002 Dec; 277(52):50293-302. PubMed ID: 12381736 [TBL] [Abstract][Full Text] [Related]