These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 17277198)
1. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Baesman SM; Bullen TD; Dewald J; Zhang D; Curran S; Islam FS; Beveridge TJ; Oremland RS Appl Environ Microbiol; 2007 Apr; 73(7):2135-43. PubMed ID: 17277198 [TBL] [Abstract][Full Text] [Related]
2. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Oremland RS; Herbel MJ; Blum JS; Langley S; Beveridge TJ; Ajayan PM; Sutto T; Ellis AV; Curran S Appl Environ Microbiol; 2004 Jan; 70(1):52-60. PubMed ID: 14711625 [TBL] [Abstract][Full Text] [Related]
3. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Bajaj M; Winter J Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453 [TBL] [Abstract][Full Text] [Related]
4. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Wadgaonkar SL; Mal J; Nancharaiah YV; Maheshwari NO; Esposito G; Lens PNL Appl Microbiol Biotechnol; 2018 Mar; 102(6):2899-2911. PubMed ID: 29399711 [TBL] [Abstract][Full Text] [Related]
5. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326 [TBL] [Abstract][Full Text] [Related]
6. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Baesman SM; Stolz JF; Kulp TR; Oremland RS Extremophiles; 2009 Jul; 13(4):695-705. PubMed ID: 19536453 [TBL] [Abstract][Full Text] [Related]
7. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. Ramos-Ruiz A; Field JA; Wilkening JV; Sierra-Alvarez R Environ Sci Technol; 2016 Feb; 50(3):1492-500. PubMed ID: 26735010 [TBL] [Abstract][Full Text] [Related]
8. Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. Ramos-Ruiz A; Sesma-Martin J; Sierra-Alvarez R; Field JA Water Res; 2017 Jan; 108():189-196. PubMed ID: 27825682 [TBL] [Abstract][Full Text] [Related]
9. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods. Forootanfar H; Amirpour-Rostami S; Jafari M; Forootanfar A; Yousefizadeh Z; Shakibaie M Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():183-189. PubMed ID: 25686938 [TBL] [Abstract][Full Text] [Related]
10. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ Microb Cell Fact; 2016 Dec; 15(1):204. PubMed ID: 27978836 [TBL] [Abstract][Full Text] [Related]
11. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. Borghese R; Baccolini C; Francia F; Sabatino P; Turner RJ; Zannoni D J Hazard Mater; 2014 Mar; 269():24-30. PubMed ID: 24462199 [TBL] [Abstract][Full Text] [Related]
12. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1. Kim DH; Kim MG; Jiang S; Lee JH; Hur HG Environ Sci Technol; 2013 Aug; 47(15):8709-15. PubMed ID: 23802169 [TBL] [Abstract][Full Text] [Related]
13. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Maltman C; Yurkov V Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321 [TBL] [Abstract][Full Text] [Related]
14. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Kim DH; Kanaly RA; Hur HG Bioresour Technol; 2012 Dec; 125():127-31. PubMed ID: 23026324 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous bioreduction of tellurite and selenite by Yarrowia lipolytica, Trichosporon cutaneum, and their co-culture along with characterization of biosynthesized Te-Se nanoparticles. Hosseini F; Hadian M; Lashani E; Moghimi H Microb Cell Fact; 2023 Sep; 22(1):193. PubMed ID: 37749532 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice. Mirjani R; Faramarzi MA; Sharifzadeh M; Setayesh N; Khoshayand MR; Shahverdi AR IET Nanobiotechnol; 2015 Oct; 9(5):300-5. PubMed ID: 26435284 [TBL] [Abstract][Full Text] [Related]
17. Formation of biogenic tellurium nanorods in unicellular green alga Chlamydomonas reinhardtii. Takada S; Tanaka YK; Kumagai K; Kobayashi K; Hokura A; Ogra Y Metallomics; 2022 Nov; 14(11):. PubMed ID: 36367503 [TBL] [Abstract][Full Text] [Related]