BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17277200)

  • 1. shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain.
    Kotsyurbenko OR; Friedrich MW; Simankova MV; Nozhevnikova AN; Golyshin PN; Timmis KN; Conrad R
    Appl Environ Microbiol; 2007 Apr; 73(7):2344-8. PubMed ID: 17277200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat.
    Horn MA; Matthies C; Küsel K; Schramm A; Drake HL
    Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting.
    Høj L; Olsen RA; Torsvik VL
    FEMS Microbiol Ecol; 2005 Jun; 53(1):89-101. PubMed ID: 16329932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurements of dissolved CH
    Pal DS; Tripathee R; Reid MC; Schäfer KVR; Jaffé PR
    Environ Monit Assess; 2018 Feb; 190(3):176. PubMed ID: 29484491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.
    Conrad R; Klose M; Noll M
    Environ Microbiol; 2009 Jul; 11(7):1844-53. PubMed ID: 19508556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic links between fermenters and methanogens in a moderately acidic fen soil.
    Wüst PK; Horn MA; Drake HL
    Environ Microbiol; 2009 Jun; 11(6):1395-409. PubMed ID: 19222542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane.
    Shin HC; Ju DH; Jeon BS; Choi O; Kim HW; Um Y; Lee DH; Sang BI
    PLoS One; 2015; 10(12):e0144999. PubMed ID: 26694756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a novel acidiphilic methanogen from an acidic peat bog.
    Bräuer SL; Cadillo-Quiroz H; Yashiro E; Yavitt JB; Zinder SH
    Nature; 2006 Jul; 442(7099):192-4. PubMed ID: 16699521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost.
    Metje M; Frenzel P
    Environ Microbiol; 2007 Apr; 9(4):954-64. PubMed ID: 17359267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette.
    Beulig F; Heuer VB; Akob DM; Viehweger B; Elvert M; Herrmann M; Hinrichs KU; Küsel K
    ISME J; 2015 Mar; 9(3):746-59. PubMed ID: 25216086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane production and release from two New England peatlands.
    Duval B; Goodwin S
    Int Microbiol; 2000 Jun; 3(2):89-95. PubMed ID: 11001537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries.
    Nozhevnikova AN; Nekrasova V; Ammann A; Zehnder AJ; Wehrli B; Holliger C
    FEMS Microbiol Ecol; 2007 Dec; 62(3):336-44. PubMed ID: 17949433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain deltaH) in a fed-batch fermentor.
    Pennings JL; Vermeij P; de Poorter LM; Keltjens JT; Vogels GD
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):281-91. PubMed ID: 15188894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field.
    Krüger M; Frenzel P; Kemnitz D; Conrad R
    FEMS Microbiol Ecol; 2005 Feb; 51(3):323-31. PubMed ID: 16329880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes.
    Lew S; Glińska-Lewczuk K
    Sci Total Environ; 2018 Dec; 645():1201-1211. PubMed ID: 30248845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate.
    Lv L; Mbadinga SM; Wang LY; Liu JF; Gu JD; Mu BZ; Yang SZ
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7757-69. PubMed ID: 25985849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition of Fe(III) reduction and methanogenesis in an acidic fen.
    Reiche M; Torburg G; Küsel K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide.
    Mayer F; Enzmann F; Lopez AM; Holtmann D
    Bioresour Technol; 2019 Oct; 289():121706. PubMed ID: 31279320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.