BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17277331)

  • 1. Disease-specific genomic analysis: identifying the signature of pathologic biology.
    Nicolau M; Tibshirani R; Børresen-Dale AL; Jeffrey SS
    Bioinformatics; 2007 Apr; 23(8):957-65. PubMed ID: 17277331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markers improve clustering of CGH data.
    Liu J; Ranka S; Kahveci T
    Bioinformatics; 2007 Feb; 23(4):450-7. PubMed ID: 17150994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
    Gevaert O; De Smet F; Timmerman D; Moreau Y; De Moor B
    Bioinformatics; 2006 Jul; 22(14):e184-90. PubMed ID: 16873470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer.
    Buness A; Kuner R; Ruschhaupt M; Poustka A; Sültmann H; Tresch A
    Bioinformatics; 2007 Sep; 23(17):2273-80. PubMed ID: 17599933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avoiding model selection bias in small-sample genomic datasets.
    Berrar D; Bradbury I; Dubitzky W
    Bioinformatics; 2006 May; 22(10):1245-50. PubMed ID: 16500931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in projecting clustering results across gene expression-profiling datasets.
    Lusa L; McShane LM; Reid JF; De Cecco L; Ambrogi F; Biganzoli E; Gariboldi M; Pierotti MA
    J Natl Cancer Inst; 2007 Nov; 99(22):1715-23. PubMed ID: 18000217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profiles of breast cancer obtained from core cut biopsies before neoadjuvant docetaxel, adriamycin, and cyclophoshamide chemotherapy correlate with routine prognostic markers and could be used to identify predictive signatures.
    Rody A; Karn T; Gätje R; Kourtis K; Minckwitz G; Loibl S; Munnes M; Ruckhäberle E; Holtrich U; Kaufmann M; Ahr A
    Zentralbl Gynakol; 2006 Apr; 128(2):76-81. PubMed ID: 16673249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large scale data mining approach for gene-specific standardization of microarray gene expression data.
    Yoon S; Yang Y; Choi J; Seong J
    Bioinformatics; 2006 Dec; 22(23):2898-904. PubMed ID: 17032674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting a breast cancer microarray signature into a high-throughput diagnostic test.
    Glas AM; Floore A; Delahaye LJ; Witteveen AT; Pover RC; Bakx N; Lahti-Domenici JS; Bruinsma TJ; Warmoes MO; Bernards R; Wessels LF; Van't Veer LJ
    BMC Genomics; 2006 Oct; 7():278. PubMed ID: 17074082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data.
    Huang DS; Zheng CH
    Bioinformatics; 2006 Aug; 22(15):1855-62. PubMed ID: 16709589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
    Gui J; Li H
    Bioinformatics; 2005 Jul; 21(13):3001-8. PubMed ID: 15814556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supervised approach for identifying discriminating genotype patterns and its application to breast cancer data.
    Yosef N; Yakhini Z; Tsalenko A; Kristensen V; Børresen-Dale AL; Ruppin E; Sharan R
    Bioinformatics; 2007 Jan; 23(2):e91-8. PubMed ID: 17237111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving molecular cancer class discovery through sparse non-negative matrix factorization.
    Gao Y; Church G
    Bioinformatics; 2005 Nov; 21(21):3970-5. PubMed ID: 16244221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression profiling of luminal B breast cancers reveals NHERF1 as a new marker of endocrine resistance.
    Karn T; Ruckhäberle E; Hanker L; Müller V; Schmidt M; Solbach C; Gätje R; Gehrmann M; Holtrich U; Kaufmann M; Rody A
    Breast Cancer Res Treat; 2011 Nov; 130(2):409-20. PubMed ID: 21203899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble dependence model for classification and prediction of cancer and normal gene expression data.
    Qiu P; Wang ZJ; Liu KJ
    Bioinformatics; 2005 Jul; 21(14):3114-21. PubMed ID: 15879455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kalman filtering for disease-state estimation from microarray data.
    Kelemen JZ; Kertész-Farkas A; Kocsor A; Puskás LG
    Bioinformatics; 2006 Dec; 22(24):3047-53. PubMed ID: 17065158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer.
    Zhang W; Rekaya R; Bertrand K
    Bioinformatics; 2006 Feb; 22(3):317-25. PubMed ID: 16267079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic characterization of multiple clinical phenotypes of cancer using multivariate linear regression models.
    Matsui S; Ito M; Nishiyama H; Uno H; Kotani H; Watanabe J; Guilford P; Reeve A; Fukushima M; Ogawa O
    Bioinformatics; 2007 Mar; 23(6):732-8. PubMed ID: 17237045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer.
    Karn T; Metzler D; Ruckhäberle E; Hanker L; Gätje R; Solbach C; Ahr A; Schmidt M; Holtrich U; Kaufmann M; Rody A
    Breast Cancer Res Treat; 2010 Apr; 120(3):567-79. PubMed ID: 19455418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of replacing the unreliable cDNA microarray measurements on the disease classification based on gene expression profiles and functional modules.
    Wang D; Lv Y; Guo Z; Li X; Li Y; Zhu J; Yang D; Xu J; Wang C; Rao S; Yang B
    Bioinformatics; 2006 Dec; 22(23):2883-9. PubMed ID: 16809389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.