These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17277367)

  • 1. Genomewide analysis of epistatic effects for quantitative traits in barley.
    Xu S; Jia Z
    Genetics; 2007 Apr; 175(4):1955-63. PubMed ID: 17277367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotype by environment interaction of quantitative traits: a case study in barley.
    Zhao F; Xu S
    G3 (Bethesda); 2012 Jul; 2(7):779-88. PubMed ID: 22870401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).
    Li ZK; Jiang XL; Peng T; Shi CL; Han SX; Tian B; Zhu ZL; Tian JC
    Genet Mol Res; 2014 Feb; 13(1):1412-24. PubMed ID: 24634240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing pair-wise epistatic effects associated with three agronomic traits in barley.
    Xu Y; Wu Y; Wu J
    Genetica; 2018 Apr; 146(2):161-170. PubMed ID: 29349538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An empirical Bayes method for estimating epistatic effects of quantitative trait loci.
    Xu S
    Biometrics; 2007 Jun; 63(2):513-21. PubMed ID: 17688503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular detection of QTL controlling plant height components in a doubled haploid barley population.
    Ren XF; Sun DF; Dong WB; Sun GL; Li CD
    Genet Mol Res; 2014 Apr; 13(2):3089-99. PubMed ID: 24782166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.).
    Bocianowski J; Warzecha T; Nowosad K; Bathelt R
    J Appl Genet; 2019 May; 60(2):127-135. PubMed ID: 30877656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping QTLs with epistatic effects and QTL x environment interactions for plant height using a doubled haploid population in cultivated wheat.
    Zhang K; Tian J; Zhao L; Wang S
    J Genet Genomics; 2008 Feb; 35(2):119-27. PubMed ID: 18407059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations.
    Li H; Ribaut JM; Li Z; Wang J
    Theor Appl Genet; 2008 Jan; 116(2):243-60. PubMed ID: 17985112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population.
    Zhao JY; Becker HC; Ding HD; Zhang YF; Zhang DQ; Ecke W
    Yi Chuan Xue Bao; 2005 Sep; 32(9):969-78. PubMed ID: 16201242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum).
    von Korff M; Léon J; Pillen K
    Theor Appl Genet; 2010 Nov; 121(8):1455-64. PubMed ID: 20617300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An expectation and maximization algorithm for estimating Q X E interaction effects.
    Zhao F; Xu S
    Theor Appl Genet; 2012 May; 124(8):1375-87. PubMed ID: 22297562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias correction for estimated QTL effects using the penalized maximum likelihood method.
    Zhang J; Yue C; Zhang YM
    Heredity (Edinb); 2012 Apr; 108(4):396-402. PubMed ID: 21934700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley.
    Li JZ; Huang XQ; Heinrichs F; Ganal MW; Röder MS
    Theor Appl Genet; 2005 Jan; 110(2):356-63. PubMed ID: 15549229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical and numerical comparisons of two methods of estimation of additive × additive × additive interaction of QTL effects.
    Cyplik A; Bocianowski J
    J Appl Genet; 2022 May; 63(2):213-221. PubMed ID: 34940940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL mapping uncovers a semi-dwarf 1 (sdw1) allele in the barley (Hordeum vulgare) ND23049 line.
    Bélanger S; Paquet-Marceau S; Díaz Lago JE; Belzile F
    Genome; 2018 Jun; 61(6):429-436. PubMed ID: 29658311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping a major QTL for malt extract of barley from a cross between TX9425 × Naso Nijo.
    Wang J; Yang J; Zhang Q; Zhu J; Jia Q; Hua W; Shang Y; Li C; Zhou M
    Theor Appl Genet; 2015 May; 128(5):943-52. PubMed ID: 25773294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population.
    Jiang GH; Xu CG; Li XH; He YQ
    Yi Chuan Xue Bao; 2004 Jan; 31(1):63-72. PubMed ID: 15468921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the genetic architecture of flowering time control in barley through nested association mapping.
    Maurer A; Draba V; Jiang Y; Schnaithmann F; Sharma R; Schumann E; Kilian B; Reif JC; Pillen K
    BMC Genomics; 2015 Apr; 16(1):290. PubMed ID: 25887319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.).
    Obsa BT; Eglinton J; Coventry S; March T; Langridge P; Fleury D
    Theor Appl Genet; 2016 Jun; 129(6):1139-51. PubMed ID: 26908251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.