BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17278486)

  • 1. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.
    Shiraishi J; Li Q; Appelbaum D; Pu Y; Doi K
    Med Phys; 2007 Jan; 34(1):25-36. PubMed ID: 17278486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical utility of temporal subtraction images in successive whole-body bone scans: evaluation in a prospective clinical study.
    Shiraishi J; Appelbaum D; Pu Y; Engelmann R; Li Q; Doi K
    J Digit Imaging; 2011 Aug; 24(4):680-7. PubMed ID: 20730471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted interpretation of planar whole-body bone scans.
    Sadik M; Hamadeh I; Nordblom P; Suurkula M; Höglund P; Ohlsson M; Edenbrandt L
    J Nucl Med; 2008 Dec; 49(12):1958-65. PubMed ID: 18997038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided diagnosis and artificial intelligence in clinical imaging.
    Shiraishi J; Li Q; Appelbaum D; Doi K
    Semin Nucl Med; 2011 Nov; 41(6):449-62. PubMed ID: 21978447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of temporal subtraction images for identification of interval changes in successive whole-body bone scans: JAFROC analysis of radiologists' performance.
    Shiraishi J; Appelbaum D; Pu Y; Li Q; Pesce L; Doi K
    Acad Radiol; 2007 Aug; 14(8):959-66. PubMed ID: 17659242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.
    Jeong CB; Kim KG; Kim TS; Kim SK
    J Digit Imaging; 2011 Jun; 24(3):424-36. PubMed ID: 20195695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tumor segmentation on bone scans using context information and random forests.
    Chu G; Lo P; Ramakrishna B; Kim H; Morris D; Goldin J; Brown M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):601-8. PubMed ID: 25333168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new computer-based decision-support system for the interpretation of bone scans.
    Sadik M; Jakobsson D; Olofsson F; Ohlsson M; Suurkula M; Edenbrandt L
    Nucl Med Commun; 2006 May; 27(5):417-23. PubMed ID: 16609352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical regularization of deformation fields for atlas-based segmentation of bone scintigraphy images.
    Sjöstrand K; Ohlsson M; Edenbrandt L
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):664-71. PubMed ID: 20426045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait recognition with shifted energy image and structural feature extraction.
    Huang X; Boulgouris NV
    IEEE Trans Image Process; 2012 Apr; 21(4):2256-68. PubMed ID: 22194243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to test the reproducibility and to improve performance of computer-aided detection schemes for digitized mammograms.
    Zheng B; Gur D; Good WF; Hardesty LA
    Med Phys; 2004 Nov; 31(11):2964-72. PubMed ID: 15587648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single photon emission computed tomography (SPECT) and SPECT/low-dose computerized tomography did not increase sensitivity or specificity compared to planar bone scintigraphy for detection of bone metastases in advanced breast cancer.
    Haraldsen A; Bluhme H; Røhl L; Pedersen EM; Jensen AB; Hansen EB; Nellemann H; Rasmussen F; Morsing A
    Clin Physiol Funct Imaging; 2016 Jan; 36(1):40-6. PubMed ID: 25257661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPECT imaging in the diagnosis of pulmonary embolism: automated detection of match and mismatch defects by means of image-processing techniques.
    Reinartz P; Kaiser HJ; Wildberger JE; Gordji C; Nowak B; Buell U
    J Nucl Med; 2006 Jun; 47(6):968-73. PubMed ID: 16741306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiview-based computer-aided detection scheme for breast masses.
    Zheng B; Leader JK; Abrams GS; Lu AH; Wallace LP; Maitz GS; Gur D
    Med Phys; 2006 Sep; 33(9):3135-43. PubMed ID: 17022205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: a multicenter, multiple-reader, multiple-case study.
    Sadik M; Suurkula M; Höglund P; Järund A; Edenbrandt L
    J Nucl Med; 2009 Mar; 50(3):368-75. PubMed ID: 19223423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of computer-aided diagnosis system for bone scans: a retrospective analysis in 406 patients.
    Tokuda O; Harada Y; Ohishi Y; Matsunaga N; Edenbrandt L
    Ann Nucl Med; 2014 May; 28(4):329-39. PubMed ID: 24573796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images.
    Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D
    Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics.
    Chen W; Giger ML; Lan L; Bick U
    Med Phys; 2004 May; 31(5):1076-82. PubMed ID: 15191295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal subtraction in chest radiography: automated assessment of registration accuracy.
    Armato SG; Doshi DJ; Engelmann R; Croteau CL; MacMahon H
    Med Phys; 2006 May; 33(5):1239-49. PubMed ID: 16752558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine.
    Yamamoto D; Arimura H; Kakeda S; Magome T; Yamashita Y; Toyofuku F; Ohki M; Higashida Y; Korogi Y
    Comput Med Imaging Graph; 2010 Jul; 34(5):404-13. PubMed ID: 20189353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.