These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17278564)

  • 1. Estimation of the dynamic spinal forces using a recurrent fuzzy neural network.
    Hou Y; Zurada JM; Karwowski W; Marras WS; Davis K
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):100-9. PubMed ID: 17278564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic muscle force predictions from EMG: an artificial neural network approach.
    Liu MM; Herzog W; Savelberg HH
    J Electromyogr Kinesiol; 1999 Dec; 9(6):391-400. PubMed ID: 10597052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain.
    Graham RB; Oikawa LY; Ross GB
    J Biomech; 2014 Apr; 47(6):1459-64. PubMed ID: 24524991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EMG-assisted model of trunk loading during free-dynamic lifting.
    Granata KP; Marras WS
    J Biomech; 1995 Nov; 28(11):1309-17. PubMed ID: 8522544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters.
    Valero-Cuevas FJ; Johanson ME; Towles JD
    J Biomech; 2003 Jul; 36(7):1019-30. PubMed ID: 12757811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuro-fuzzy model for estimating electromyographical activity of trunk muscles due to manual lifting.
    Lee W; Karwowski W; Marras WS; Rodrick D
    Ergonomics; 2003 Jan; 46(1-3):285-309. PubMed ID: 12554412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can shoulder joint reaction forces be estimated by neural networks?
    de Vries WHK; Veeger HEJ; Baten CTM; van der Helm FCT
    J Biomech; 2016 Jan; 49(1):73-79. PubMed ID: 26654109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle force estimation with surface EMG during dynamic muscle contractions: a wavelet and ANN based approach.
    Bai F; Chew CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4589-92. PubMed ID: 24110756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The simplification of the muscle force prediction using sensitivity analyses.
    Vejpustková J; Vilímek M; Sochor M
    Technol Health Care; 2006; 14(4-5):215-8. PubMed ID: 17065744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks.
    Mohammadzadeh A; Ghaemi S
    ISA Trans; 2015 Sep; 58():318-29. PubMed ID: 25933686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paraspinal muscle reflex dynamics.
    Granata KP; Slota GP; Bennett BC
    J Biomech; 2004 Feb; 37(2):241-7. PubMed ID: 14706327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting EMG with generalized Volterra kernel model.
    Song D; Hendrickson P; Marmarelis VZ; Aguayo J; He J; Loeb GE; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():201-4. PubMed ID: 19162628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EMG-driven model applied for predicting metabolic energy consumption during movement.
    Bisi MC; Stagni R; Houdijk H; Gnudi G
    J Electromyogr Kinesiol; 2011 Dec; 21(6):1074-80. PubMed ID: 21840224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.