BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17279316)

  • 1. Sulfatide-tenascin interaction mediates binding to the extracellular matrix and endocytic uptake of liposomes in glioma cells.
    Shao K; Hou Q; Go ML; Duan W; Cheung NS; Feng SS; Wong KP; Yoram A; Zhang W; Huang Z; Li QT
    Cell Mol Life Sci; 2007 Feb; 64(4):506-15. PubMed ID: 17279316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas.
    Shao K; Hou Q; Duan W; Go ML; Wong KP; Li QT
    J Control Release; 2006 Oct; 115(2):150-7. PubMed ID: 16963144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Basic studies on chemotherapy of brain tumors by means of liposomes: affinity of sulfatide-inserted liposomes to human glioma cells].
    Kito A; Yoshida J; Kageyama N; Inoue I; Abe H; Arichi S; Kojima N; Yagi K
    No To Shinkei; 1987 Aug; 39(8):783-8. PubMed ID: 3426863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved efficacy and reduced toxicity of doxorubicin encapsulated in sulfatide-containing nanoliposome in a glioma model.
    Lin J; Shigdar S; Fang DZ; Xiang D; Wei MQ; Danks A; Kong L; Li L; Qiao L; Duan W
    PLoS One; 2014; 9(7):e103736. PubMed ID: 25072631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of tenascin-C to soluble fibronectin and matrix fibrils.
    Chung CY; Zardi L; Erickson HP
    J Biol Chem; 1995 Dec; 270(48):29012-7. PubMed ID: 7499434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells.
    Luo HC; Li N; Yan L; Mai KJ; Sun K; Wang W; Lao GJ; Yang C; Zhang LM; Ren M
    Int J Nanomedicine; 2017; 12():1085-1096. PubMed ID: 28223800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway.
    Mudhakir D; Akita H; Tan E; Harashima H
    J Control Release; 2008 Jan; 125(2):164-73. PubMed ID: 18054812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced antitumor efficacy and reduced systemic toxicity of sulfatide-containing nanoliposomal doxorubicin in a xenograft model of colorectal cancer.
    Lin J; Yu Y; Shigdar S; Fang DZ; Du JR; Wei MQ; Danks A; Liu K; Duan W
    PLoS One; 2012; 7(11):e49277. PubMed ID: 23145140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of chondroitin sulfates on brain-derived tenascin-R in carbohydrate-dependent interactions with fibronectin and tenascin-C.
    Probstmeier R; Braunewell K; Pesheva P
    Brain Res; 2000 Apr; 863(1-2):42-51. PubMed ID: 10773191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tenascin-C: Form versus function.
    Giblin SP; Midwood KS
    Cell Adh Migr; 2015; 9(1-2):48-82. PubMed ID: 25482829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of protein kinase C delta attenuates tenascin-C stimulated glioma invasion in three-dimensional matrix.
    Sarkar S; Yong VW
    Carcinogenesis; 2010 Feb; 31(2):311-7. PubMed ID: 19965895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic domains of tenascin-C differentially control fibronectin fibrillogenesis.
    To WS; Midwood KS
    Matrix Biol; 2010 Sep; 29(7):573-85. PubMed ID: 20708078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenascin-C Function in Glioma: Immunomodulation and Beyond.
    Yalcin F; Dzaye O; Xia S
    Adv Exp Med Biol; 2020; 1272():149-172. PubMed ID: 32845507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12.
    Sarkar S; Nuttall RK; Liu S; Edwards DR; Yong VW
    Cancer Res; 2006 Dec; 66(24):11771-80. PubMed ID: 17178873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of tenascins in the ECM of gliomas.
    Brösicke N; Faissner A
    Cell Adh Migr; 2015; 9(1-2):131-40. PubMed ID: 25695402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.
    Gu MJ; Li KF; Zhang LX; Wang H; Liu LS; Zheng ZZ; Han NY; Yang ZJ; Fan TY
    Int J Nanomedicine; 2015; 10():5187-204. PubMed ID: 26316749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction pathways involved in interaction of galactosylceramide/sulfatide-containing liposomes with cultured oligodendrocytes and requirement for myelin basic protein and glycosphingolipids.
    Boggs JM; Gao W; Hirahara Y
    J Neurosci Res; 2008 May; 86(7):1448-58. PubMed ID: 18189317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4.
    Midwood KS; Valenick LV; Hsia HC; Schwarzbauer JE
    Mol Biol Cell; 2004 Dec; 15(12):5670-7. PubMed ID: 15483051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tenascin-C protein is induced by transforming growth factor-beta1 but does not correlate with time to tumor progression in high-grade gliomas.
    Hau P; Kunz-Schughart LA; Rümmele P; Arslan F; Dörfelt A; Koch H; Lohmeier A; Hirschmann B; Müller A; Bogdahn U; Bosserhoff AK
    J Neurooncol; 2006 Mar; 77(1):1-7. PubMed ID: 16292494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.