These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17279447)

  • 1. Improving the yield from fermentative hydrogen production.
    Kraemer JT; Bagley DM
    Biotechnol Lett; 2007 May; 29(5):685-95. PubMed ID: 17279447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.
    Kraemer JT; Bagley DM
    Biotechnol Lett; 2006 Sep; 28(18):1485-91. PubMed ID: 16955354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of fermentative hydrogen production: various approaches.
    Nath K; Das D
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):520-9. PubMed ID: 15378294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition.
    Nguyen TA; Han SJ; Kim JP; Kim MS; Sim SJ
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S38-41. PubMed ID: 19361983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing fermentative hydrogen production from sucrose.
    Perera KR; Nirmalakhandan N
    Bioresour Technol; 2010 Dec; 101(23):9137-43. PubMed ID: 20674339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of H2 consumption and its role in continuous fermentative hydrogen production.
    Kraemer JT; Bagley DM
    Water Sci Technol; 2008; 57(5):681-5. PubMed ID: 18401138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes.
    Cheong DY; Hansen CL
    Bioresour Technol; 2007 Aug; 98(11):2229-39. PubMed ID: 17107783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge.
    Wang X; Hoefel D; Saint CP; Monis PT; Jin B
    J Appl Microbiol; 2007 Nov; 103(5):1415-23. PubMed ID: 17953552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor.
    Vijaya Bhaskar Y; Venkata Mohan S; Sarma PN
    Bioresour Technol; 2008 Oct; 99(15):6941-8. PubMed ID: 18291638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production from sewage sludge using mixed microflora inoculum: effect of pH and enzymatic pretreatment.
    Massanet-Nicolau J; Dinsdale R; Guwy A
    Bioresour Technol; 2008 Sep; 99(14):6325-31. PubMed ID: 18226889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.
    de Vrije T; Mars AE; Budde MA; Lai MH; Dijkema C; de Waard P; Claassen PA
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1358-67. PubMed ID: 17216445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.
    Shi Y; Zhao XT; Cao P; Hu Y; Zhang L; Jia Y; Lu Z
    Biotechnol Lett; 2009 Sep; 31(9):1327-33. PubMed ID: 19466560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production.
    Munro SA; Zinder SH; Walker LP
    Biotechnol Prog; 2009; 25(4):1035-42. PubMed ID: 19551880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological hydrogen production from nitrogen-deficient substrates.
    Hafner SD
    Biotechnol Bioeng; 2007 Jun; 97(2):435-7. PubMed ID: 17163516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of acetogenic H2 consumption in dark fermentation and effectiveness of pH.
    Calli B; Zhao J; Nijssen E; Vanbroekhoven K
    Water Sci Technol; 2008; 57(6):809-14. PubMed ID: 18413938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C).
    Liu D; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2008 Aug; 100(6):1108-14. PubMed ID: 18553394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values.
    Zhao QB; Yu HQ
    Bioresour Technol; 2008 Mar; 99(5):1353-8. PubMed ID: 17482810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.