These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
599 related articles for article (PubMed ID: 17279709)
21. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates. Xu W; Liu H; Lu S; Xi J; Wang Y Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Lee S; Teshima K; Fujisawa M; Fujii S; Endo M; Oishi S Phys Chem Chem Phys; 2009 May; 11(19):3628-33. PubMed ID: 19421472 [TBL] [Abstract][Full Text] [Related]
23. Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity. Zhu S; Li Y; Zhang J; Lü C; Dai X; Jia F; Gao H; Yang B J Colloid Interface Sci; 2010 Apr; 344(2):541-6. PubMed ID: 20092825 [TBL] [Abstract][Full Text] [Related]
24. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water. Wang GG; Zhu LQ; Liu HC; Li WP Langmuir; 2011 Oct; 27(20):12275-9. PubMed ID: 21919516 [TBL] [Abstract][Full Text] [Related]
25. Direct catalytic route to superhydrophobic polyethylene films. Han W; Wu D; Ming W; Niemantsverdriet HJ; Thüne PC Langmuir; 2006 Sep; 22(19):7956-9. PubMed ID: 16952226 [TBL] [Abstract][Full Text] [Related]
26. Design and fabrication of a superhydrophobic glass surface with micro-network of nanopillars. Park J; Lim H; Kim W; Ko JS J Colloid Interface Sci; 2011 Aug; 360(1):272-9. PubMed ID: 21565358 [TBL] [Abstract][Full Text] [Related]
27. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force. Li Y; Zheng M; Ma L; Zhong M; Shen W Inorg Chem; 2008 Apr; 47(8):3140-3. PubMed ID: 18318487 [TBL] [Abstract][Full Text] [Related]
29. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures. Basu BJ; Manasa J J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844 [TBL] [Abstract][Full Text] [Related]
30. Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces. Peng M; Liao Z; Qi J; Zhou Z Langmuir; 2010 Aug; 26(16):13572-8. PubMed ID: 20695606 [TBL] [Abstract][Full Text] [Related]
31. Petal effect: a superhydrophobic state with high adhesive force. Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating. Lee EJ; Kim JJ; Cho SO Langmuir; 2010 Mar; 26(5):3024-30. PubMed ID: 20121048 [TBL] [Abstract][Full Text] [Related]
33. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces. Sajadinia SH; Sharif F J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948 [TBL] [Abstract][Full Text] [Related]
34. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
35. Solution-processable flower-shaped hierarchical structures: self-assembly, formation, and state transition of biomimetic superhydrophobic surfaces. Yin J; Yan J; He M; Song Y; Xu X; Wu K; Pei J Chemistry; 2010 Jun; 16(24):7309-18. PubMed ID: 20468037 [TBL] [Abstract][Full Text] [Related]
36. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces. Liu X; He J Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of superhydrophobic surfaces of n-hexatriacontane. Tavana H; Amirfazli A; Neumann AW Langmuir; 2006 Jun; 22(13):5556-9. PubMed ID: 16768473 [TBL] [Abstract][Full Text] [Related]
38. From natural to biomimetic: The superhydrophobicity and the contact time. Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147 [TBL] [Abstract][Full Text] [Related]
39. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Ellinas K; Tserepi A; Gogolides E Langmuir; 2011 Apr; 27(7):3960-9. PubMed ID: 21351799 [TBL] [Abstract][Full Text] [Related]
40. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Bhushan B; Jung YC; Koch K Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]