These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17279722)

  • 1. Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization.
    Chen DL; Li L; Reyes S; Adamson DN; Ismagilov RF
    Langmuir; 2007 Feb; 23(4):2255-60. PubMed ID: 17279722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
    Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF
    Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode.
    Liu Y; Ismagilov RF
    Langmuir; 2009 Mar; 25(5):2854-9. PubMed ID: 19239191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence.
    Kralj JG; Schmidt MA; Jensen KF
    Lab Chip; 2005 May; 5(5):531-5. PubMed ID: 15856090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
    Zheng B; Gerdts CJ; Ismagilov RF
    Curr Opin Struct Biol; 2005 Oct; 15(5):548-55. PubMed ID: 16154351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridge evolution during the coalescence of immiscible droplets.
    Xu H; Wang T; Che Z
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):869-877. PubMed ID: 35963173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.
    Roach LS; Song H; Ismagilov RF
    Anal Chem; 2005 Feb; 77(3):785-96. PubMed ID: 15679345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence of immiscible droplets in liquid environments.
    Xu H; Wang T; Che Z
    J Colloid Interface Sci; 2024 Apr; 659():60-70. PubMed ID: 38157727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a multijunction microfluidic device to inject substrate into an array of preformed plugs without cross-contamination: comparing theory and experiments.
    Li L; Boedicker JQ; Ismagilov RF
    Anal Chem; 2007 Apr; 79(7):2756-61. PubMed ID: 17338503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mixing of binary droplets induced by capillary pressure.
    Luo X; Yin H; Ren J; Yan H; Huang X; Yang D; He L
    J Colloid Interface Sci; 2019 Jun; 545():35-42. PubMed ID: 30861480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere.
    Wang WH; Zhang ZL; Xie YN; Wang L; Yi S; Liu K; Liu J; Pang DW; Zhao XZ
    Langmuir; 2007 Nov; 23(23):11924-31. PubMed ID: 17918864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow.
    Zheng B; Ismagilov RF
    Angew Chem Int Ed Engl; 2005 Apr; 44(17):2520-3. PubMed ID: 15786522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital microfluidics-like manipulation of electrokinetically preconcentrated bioparticle plugs in continuous-flow.
    Park S; Sabbagh B; Abu-Rjal R; Yossifon G
    Lab Chip; 2022 Feb; 22(4):814-825. PubMed ID: 35080550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Array Chip with Parallel Channels for Fast Preparation of Sample Droplet Array.
    Kong KS; Choi JH; Kim GM
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6294-8. PubMed ID: 27427705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence Processes of Droplets and Liquid Marbles.
    Jin J; Ooi CH; Dao DV; Nguyen NT
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening.
    Chen DL; Ismagilov RF
    Curr Opin Chem Biol; 2006 Jun; 10(3):226-31. PubMed ID: 16677848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.