These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17279722)

  • 21. Coalescence-induced droplet detachment on low-adhesion surfaces: A three-phase system study.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063102. PubMed ID: 31330640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable internal mixing in coalescing droplets induced by the solutal Marangoni convection of surfactants with distinct headgroup architectures.
    Nash JJ; Spicer PT; Erk KA
    J Colloid Interface Sci; 2018 Nov; 529():224-233. PubMed ID: 29902660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-line measurement of liquid-liquid phase separation boundaries using a turbidity-sensor-integrated continuous-flow microfluidic device.
    Coliaie P; Prajapati A; Ali R; Boukerche M; Korde A; Kelkar MS; Nere NK; Singh MR
    Lab Chip; 2022 Jun; 22(12):2299-2306. PubMed ID: 35451445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction.
    Tona RM; McDonald TAO; Akhavein N; Larkin JD; Lai D
    Lab Chip; 2019 Jun; 19(12):2127-2137. PubMed ID: 31114833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-phase extraction in segmented flow.
    Rendl M; Brandstetter T; Rühe J
    Langmuir; 2014 Nov; 30(43):12804-11. PubMed ID: 25300748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device.
    Roman GT; Wang M; Shultz KN; Jennings C; Kennedy RT
    Anal Chem; 2008 Nov; 80(21):8231-8. PubMed ID: 18831564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture.
    Patel M; Radhakrishnan ANP; Bescher L; Hunter-Sellars E; Schmidt-Hansberg B; Amstad E; Ibsen S; Guldin S
    Soft Matter; 2021 Jan; 17(4):947-954. PubMed ID: 33284300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of chemical concentration gradients in mobile droplet arrays via fragmentation of long immiscible diluting plugs.
    Sun M; Vanapalli SA
    Anal Chem; 2013 Feb; 85(4):2044-8. PubMed ID: 23305181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sampling from nanoliter plugs via asymmetrical splitting of segmented flow.
    Nie J; Kennedy RT
    Anal Chem; 2010 Sep; 82(18):7852-6. PubMed ID: 20738106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated generation of libraries of nL droplets.
    Kaminski TS; Jakiela S; Czekalska MA; Postek W; Garstecki P
    Lab Chip; 2012 Oct; 12(20):3995-4002. PubMed ID: 22968539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconfigurable Microfluidic Droplets Stabilized by Nanoparticle Surfactants.
    Toor A; Lamb S; Helms BA; Russell TP
    ACS Nano; 2018 Mar; 12(3):2365-2372. PubMed ID: 29509400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coalescence and splitting of confined droplets at microfluidic junctions.
    Christopher GF; Bergstein J; End NB; Poon M; Nguyen C; Anna SL
    Lab Chip; 2009 Apr; 9(8):1102-9. PubMed ID: 19350092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel.
    Kazoe Y; Matsuno T; Yamashiro I; Mawatari K; Kitamori T
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics and controllability of droplet fusion under gas-liquid-liquid three-phase flow in a microfluidic reactor.
    Hao Y; Jin N; Wang Q; Zhou Y; Zhao Y; Zhang X; Lü H
    RSC Adv; 2020 Apr; 10(24):14322-14330. PubMed ID: 35498473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature controlled tensiometry using droplet microfluidics.
    Lee D; Fang C; Ravan AS; Fuller GG; Shen AQ
    Lab Chip; 2017 Feb; 17(4):717-726. PubMed ID: 28154859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of nanolitre liquid plugs for microfluidic cell-based assays.
    Fukuda J; Takahashi S; Osaki T; Mochizuki N; Suzuki H
    Sci Technol Adv Mater; 2012 Dec; 13(6):064201. PubMed ID: 27877528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling of immiscible liquid-liquid systems by Smoothed Particle Hydrodynamics.
    Elekaei Behjati H; Navvab Kashani M; Biggs MJ
    J Colloid Interface Sci; 2017 Dec; 508():567-574. PubMed ID: 28869913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of liquid plugs at bifurcations in a microfluidic tree network.
    Quintero NV; Song Y; Manneville P; Baroud CN
    Biomicrofluidics; 2012 Sep; 6(3):34105. PubMed ID: 23874368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces.
    Li J; Wang Z; Deepak FL
    ACS Nano; 2017 Jun; 11(6):5590-5597. PubMed ID: 28538094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.