BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17279778)

  • 1. Effects of heme pocket structure and mobility on cytochrome c stability.
    Wen X; Patel KM; Russell BS; Bren KL
    Biochemistry; 2007 Mar; 46(9):2537-44. PubMed ID: 17279778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of axial methionine fluxion in Hydrogenobacter thermophilus Gln64Asn cytochrome c552.
    Wen X; Bren KL
    Biochemistry; 2005 Apr; 44(13):5225-33. PubMed ID: 15794659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme axial methionine fluxion in Pseudomonas aeruginosa Asn64Gln cytochrome c551.
    Wen X; Bren KL
    Inorg Chem; 2005 Nov; 44(23):8587-93. PubMed ID: 16271000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2009 Jan; 48(1):331-8. PubMed ID: 19053349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox properties of wild-type and heme-binding loop mutants of bacterial cytochromes C measured by direct electrochemistry.
    Ye T; Kaur R; Wen X; Bren KL; Elliott SJ
    Inorg Chem; 2005 Nov; 44(24):8999-9006. PubMed ID: 16296855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete thermal-unfolding profiles of oxidized and reduced cytochromes C.
    Uchiyama S; Ohshima A; Nakamura S; Hasegawa J; Terui N; Takayama SJ; Yamamoto Y; Sambongi Y; Kobayashi Y
    J Am Chem Soc; 2004 Nov; 126(45):14684-5. PubMed ID: 15535669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain swapping of the heme and N-terminal α-helix in Hydrogenobacter thermophilus cytochrome c(552) dimer.
    Hayashi Y; Nagao S; Osuka H; Komori H; Higuchi Y; Hirota S
    Biochemistry; 2012 Oct; 51(43):8608-16. PubMed ID: 23035813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c552 mutants: structure and dynamics at the active site probed by multidimensional NMR and vibration echo spectroscopy.
    Massari AM; McClain BL; Finkelstein IJ; Lee AP; Reynolds HL; Bren KL; Fayer MD
    J Phys Chem B; 2006 Sep; 110(38):18803-10. PubMed ID: 16986870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the stability of Hydrogenobacter thermophilus cytochrome C(552) through alteration of the basicity of the N-terminal amino group of the polypeptide chain.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2010 Dec; 49(23):10840-6. PubMed ID: 21058669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: comparative study on the thermostability of cytochrome c.
    Nakamura S; Ichiki S; Takashima H; Uchiyama S; Hasegawa J; Kobayashi Y; Sambongi Y; Ohkubo T
    Biochemistry; 2006 May; 45(19):6115-23. PubMed ID: 16681384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heme on the thermal stability of mesophilic and thermophilic cytochromes c: comparison between experimental and theoretical results.
    Oda K; Kodama R; Yoshidome T; Yamanaka M; Sambongi Y; Kinoshita M
    J Chem Phys; 2011 Jan; 134(2):025101. PubMed ID: 21241149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inversion of the stereochemistry around the sulfur atom of the axial methionine side chain through alteration of amino acid side chain packing in Hydrogenobacter thermophilus cytochrome C552 and its functional consequences.
    Tai H; Tonegawa K; Shibata T; Hemmi H; Kobayashi N; Yamamoto Y
    Biochemistry; 2013 Jul; 52(28):4800-9. PubMed ID: 23796250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of replacing the axial methionine ligand with a lysine residue in cytochrome c-550 from Paracoccus versutus assessed by X-ray crystallography and unfolding.
    Worrall JA; van Roon AM; Ubbink M; Canters GW
    FEBS J; 2005 May; 272(10):2441-55. PubMed ID: 15885094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme attachment motif mobility tunes cytochrome c redox potential.
    Michel LV; Ye T; Bowman SE; Levin BD; Hahn MA; Russell BS; Elliott SJ; Bren KL
    Biochemistry; 2007 Oct; 46(42):11753-60. PubMed ID: 17900177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability enhancement of cytochrome c through heme deprotonation and mutations.
    Sonoyama T; Hasegawa J; Uchiyama S; Nakamura S; Kobayashi Y; Sambongi Y
    Biophys Chem; 2009 Jan; 139(1):37-41. PubMed ID: 18957274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins.
    Nagao S; Ueda M; Osuka H; Komori H; Kamikubo H; Kataoka M; Higuchi Y; Hirota S
    PLoS One; 2015; 10(4):e0123653. PubMed ID: 25853415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR investigation of ferricytochrome c unfolding: detection of an equilibrium unfolding intermediate and residual structure in the denatured state.
    Russell BS; Melenkivitz R; Bren KL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8312-7. PubMed ID: 10880578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast folding kinetics and stabilization of apo-cytochrome c.
    Borgia A; Gianni S; Brunori M; Travaglini-Allocatelli C
    FEBS Lett; 2008 Mar; 582(6):1003-7. PubMed ID: 18307988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.