These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17279872)

  • 21. Winding angles of long lattice walks.
    Hammer Y; Kantor Y
    J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal intermittency on fractal lattices.
    Cosenza MG; Kapral R
    Chaos; 1994 Mar; 4(1):99-104. PubMed ID: 12780091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear polymers in disordered media: the shortest, the longest, and the mean self-avoiding walk on percolation clusters.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011123. PubMed ID: 22400528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scattering function of semiflexible polymer chains under good solvent conditions.
    Hsu HP; Paul W; Binder K
    J Chem Phys; 2012 Nov; 137(17):174902. PubMed ID: 23145745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectral dimensions of hierarchical scale-free networks with weighted shortcuts.
    Hwang S; Yun CK; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056110. PubMed ID: 21230548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Position and Orientation Distributions for Locally Self-Avoiding Walks in the Presence of Obstacles.
    Skliros A; Chirikjian GS
    Polymer (Guildf); 2008 Mar; 49(6):1701-1715. PubMed ID: 18496591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organized stiffness in regular fractal polymer structures.
    Werner M; Sommer JU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051802. PubMed ID: 21728562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
    Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifractal behavior of linear polymers in disordered media.
    Ordemann A; Porto M; Roman HE; Havlin S; Bunde A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6858-65. PubMed ID: 11088378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical behavior of the Ising model on random fractals.
    Monceau P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051132. PubMed ID: 22181393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals.
    Zivić I; Elezović-Hadzić S; Milosević S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061131. PubMed ID: 20365142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Random-Length Random Walks and Finite-Size Scaling in High Dimensions.
    Zhou Z; Grimm J; Fang S; Deng Y; Garoni TM
    Phys Rev Lett; 2018 Nov; 121(18):185701. PubMed ID: 30444384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster.
    von Ferber C; Blavats'ka V; Folk R; Holovatch Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035104. PubMed ID: 15524568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confined Polymers as Self-Avoiding Random Walks on Restricted Lattices.
    Benito J; Karayiannis NC; Laso M
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-avoiding walks and connective constants in clustered scale-free networks.
    Herrero CP
    Phys Rev E; 2019 Jan; 99(1-1):012314. PubMed ID: 30780369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution and structure formation of the distribution of partition function zeros: triangular type Ising lattices with cell decoration.
    Liaw TM; Huang MC; Chou YL; Lin SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066124. PubMed ID: 12188800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport properties of continuous-time quantum walks on Sierpinski fractals.
    Darázs Z; Anishchenko A; Kiss T; Blumen A; Mülken O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032113. PubMed ID: 25314401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling relations for watersheds.
    Fehr E; Kadau D; Araújo NA; Andrade JS; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036116. PubMed ID: 22060465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Random sequential adsorption on Euclidean, fractal, and random lattices.
    Pasinetti PM; Ramirez LS; Centres PM; Ramirez-Pastor AJ; Cwilich GA
    Phys Rev E; 2019 Nov; 100(5-1):052114. PubMed ID: 31870032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaling exponents for a monkey on a tree: fractal dimensions of randomly branched polymers.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051126. PubMed ID: 23004722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.