These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17279892)

  • 1. Extracting the scaling exponents of a self-affine, non-Gaussian process from a finite-length time series.
    Kiyani K; Chapman SC; Hnat B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051122. PubMed ID: 17279892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudononstationarity in the scaling exponents of finite-interval time series.
    Kiyani KH; Chapman SC; Watkins NW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036109. PubMed ID: 19392020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete spectral scaling of time series: towards a classification of 1/f noise.
    Rodríguez MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042122. PubMed ID: 25375453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated random processes exhibiting long tails, finite moments, and power-law spectra.
    Masoliver J; Montero M; McKane A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011110. PubMed ID: 11461228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossover between Lévy and Gaussian regimes in first-passage processes.
    Inoue J; Sazuka N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021111. PubMed ID: 17930010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.
    Nezhadhaghighi MG
    Phys Rev E; 2017 Aug; 96(2-1):022113. PubMed ID: 28950523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling forms of particle densities for Lévy walks and strong anomalous diffusion.
    Dentz M; Le Borgne T; Lester DR; de Barros FP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032128. PubMed ID: 26465447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of the interface roughness in Fe-Cr superlattices: self-affine versus non-self-affine.
    Santamaria J; Gómez ME; Vicent JL; Krishnan KM; Schuller IK
    Phys Rev Lett; 2002 Nov; 89(19):190601. PubMed ID: 12443108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals.
    Buonsante P; Burioni R; Vezzani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021105. PubMed ID: 21928947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate scaling properties of RNA free energy landscapes.
    Baskaran S; Stadler PF; Schuster P
    J Theor Biol; 1996 Aug; 181(4):299-310. PubMed ID: 8949578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear measures for characterizing rough surface morphologies.
    Kondev J; Henley CL; Salinas DG
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):104-25. PubMed ID: 11046246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method.
    Xiong W; Zhong F; Yuan W; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering lengths and universality in superdiffusive Lévy materials.
    Burioni R; di Santo S; Lepri S; Vezzani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031125. PubMed ID: 23030884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: two-loop approximation.
    Adzhemyan LTs; Antonov NV; Honkonen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036313. PubMed ID: 12366259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous scaling of stochastic processes and the Moses effect.
    Chen L; Bassler KE; McCauley JL; Gunaratne GH
    Phys Rev E; 2017 Apr; 95(4-1):042141. PubMed ID: 28505751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and statistical analysis of non-Gaussian random fields with heavy-tailed distributions.
    Nezhadhaghighi MG; Nakhlband A
    Phys Rev E; 2017 Apr; 95(4-1):042114. PubMed ID: 28505830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
    Kastening B; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.
    Adzhemyan LTs; Antonov NV; Honkonen J; Kim TL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016303. PubMed ID: 15697718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of roughness exponent measurement methods.
    Haavig Bakke JØ; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031136. PubMed ID: 17930228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.