These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 17279935)
1. Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism. Baskerville K; Paczuski M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051903. PubMed ID: 17279935 [TBL] [Abstract][Full Text] [Related]
2. Graph animals, subgraph sampling, and motif search in large networks. Baskerville K; Grassberger P; Paczuski M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036107. PubMed ID: 17930306 [TBL] [Abstract][Full Text] [Related]
3. Current innovations and future challenges of network motif detection. Tran NT; Mohan S; Xu Z; Huang CH Brief Bioinform; 2015 May; 16(3):497-525. PubMed ID: 24966356 [TBL] [Abstract][Full Text] [Related]
4. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks. He J; Wang C; Qiu K; Zhong W BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277 [TBL] [Abstract][Full Text] [Related]
5. On the Variable Ordering in Subgraph Isomorphism Algorithms. Bonnici V; Giugno R IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(1):193-203. PubMed ID: 26761859 [TBL] [Abstract][Full Text] [Related]
6. Biomolecular network motif counting and discovery by color coding. Alon N; Dao P; Hajirasouliha I; Hormozdiari F; Sahinalp SC Bioinformatics; 2008 Jul; 24(13):i241-9. PubMed ID: 18586721 [TBL] [Abstract][Full Text] [Related]
7. An efficient algorithm for detecting frequent subgraphs in biological networks. Koyutürk M; Grama A; Szpankowski W Bioinformatics; 2004 Aug; 20 Suppl 1():i200-7. PubMed ID: 15262800 [TBL] [Abstract][Full Text] [Related]
8. Efficient detection of network motifs. Wernicke S IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):347-59. PubMed ID: 17085844 [TBL] [Abstract][Full Text] [Related]
9. Network motifs come in sets: correlations in the randomization process. Ginoza R; Mugler A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011921. PubMed ID: 20866662 [TBL] [Abstract][Full Text] [Related]
11. Disjoint motif discovery in biological network using pattern join method. Patra S; Mohapatra A IET Syst Biol; 2019 Oct; 13(5):213-224. PubMed ID: 31538955 [TBL] [Abstract][Full Text] [Related]
12. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks. Przulj N; Corneil DG; Jurisica I Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112 [TBL] [Abstract][Full Text] [Related]
13. An algorithm for network motif discovery in biological networks. Qin G; Gao L Int J Data Min Bioinform; 2012; 6(1):1-16. PubMed ID: 22479815 [TBL] [Abstract][Full Text] [Related]
14. Protein complex identification by supervised graph local clustering. Qi Y; Balem F; Faloutsos C; Klein-Seetharaman J; Bar-Joseph Z Bioinformatics; 2008 Jul; 24(13):i250-8. PubMed ID: 18586722 [TBL] [Abstract][Full Text] [Related]
15. Application of graph colouring to biological networks. Khor S IET Syst Biol; 2010 May; 4(3):185-92. PubMed ID: 20499999 [TBL] [Abstract][Full Text] [Related]
16. Fitting a geometric graph to a protein-protein interaction network. Higham DJ; Rasajski M; Przulj N Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248 [TBL] [Abstract][Full Text] [Related]
17. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms. König R; Schramm G; Oswald M; Seitz H; Sager S; Zapatka M; Reinelt G; Eils R BMC Bioinformatics; 2006 Mar; 7():119. PubMed ID: 16524469 [TBL] [Abstract][Full Text] [Related]
18. Dynamical systems for discovering protein complexes and functional modules from biological networks. Li W; Liu Y; Huang HC; Peng Y; Lin Y; Ng WK; Ong KL IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):233-50. PubMed ID: 17473317 [TBL] [Abstract][Full Text] [Related]
19. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks. Liu Q; Chen YP; Li J J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214 [TBL] [Abstract][Full Text] [Related]
20. A "seed-refine" algorithm for detecting protein complexes from protein interaction data. Pei P; Zhang A IEEE Trans Nanobioscience; 2007 Mar; 6(1):43-50. PubMed ID: 17393849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]