These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators. Shabunin A; Feudel U; Astakhov V Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235 [TBL] [Abstract][Full Text] [Related]
6. Transition from amplitude to oscillation death in a network of oscillators. Nandan M; Hens CR; Pal P; Dana SK Chaos; 2014 Dec; 24(4):043103. PubMed ID: 25554023 [TBL] [Abstract][Full Text] [Related]
8. Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators. Budroni MA; Pagano G; Conte D; Paternoster B; D'ambrosio R; Ristori S; Abou-Hassan A; Rossi F Phys Chem Chem Phys; 2021 Aug; 23(32):17606-17615. PubMed ID: 34369507 [TBL] [Abstract][Full Text] [Related]
9. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
10. Oscillation death in diffusively coupled oscillators by local repulsive link. Hens CR; Olusola OI; Pal P; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390 [TBL] [Abstract][Full Text] [Related]
11. Exploration of field-like torque and field-angle tunability in coupled spin-torque nano oscillators for synchronization. Arun R; Gopal R; Chandrasekar VK; Lakshmanan M Chaos; 2024 Jan; 34(1):. PubMed ID: 38198682 [TBL] [Abstract][Full Text] [Related]
12. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660 [TBL] [Abstract][Full Text] [Related]
13. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080 [TBL] [Abstract][Full Text] [Related]
14. Delayed feedback control of synchronization in weakly coupled oscillator networks. Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488 [TBL] [Abstract][Full Text] [Related]
16. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2016 Jul; 94(1-1):012311. PubMed ID: 27575152 [TBL] [Abstract][Full Text] [Related]
17. Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony. Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Kyzgarina M; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046211. PubMed ID: 19905419 [TBL] [Abstract][Full Text] [Related]
18. A common lag scenario in quenching of oscillation in coupled oscillators. Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number. Leoni M; Liverpool TB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):040901. PubMed ID: 22680412 [TBL] [Abstract][Full Text] [Related]
20. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability. Punetha N; Ramaswamy R; Atay FM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]