These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 17279982)

  • 21. Synchronization between two weakly coupled delay-line oscillators.
    Levy EC; Horowitz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: an experimental study.
    Temirbayev AA; Nalibayev YD; Zhanabaev ZZh; Ponomarenko VI; Rosenblum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062917. PubMed ID: 23848758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators.
    Liu W; Xiao G; Zhu Y; Zhan M; Xiao J; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052902. PubMed ID: 26066224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A design principle underlying the synchronization of oscillations in cellular systems.
    Kim JR; Shin D; Jung SH; Heslop-Harrison P; Cho KH
    J Cell Sci; 2010 Feb; 123(Pt 4):537-43. PubMed ID: 20103537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictions of ultraharmonic oscillations in coupled arrays of limit cycle oscillators.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036204. PubMed ID: 17025726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics.
    Magrini LA; Oliveira Domingues M; Macau EEN; Kiss IZ
    Chaos; 2021 May; 31(5):053125. PubMed ID: 34240953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements.
    Yu W; Wood KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronization of genetic oscillators.
    Zhou T; Zhang J; Yuan Z; Chen L
    Chaos; 2008 Sep; 18(3):037126. PubMed ID: 19045500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fading of remote synchronization in tree networks of Stuart-Landau oscillators.
    Karakaya B; Minati L; Gambuzza LV; Frasca M
    Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
    Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergent dynamics in delayed attractive-repulsively coupled networks.
    Kundu P; Sharma L; Nandan M; Ghosh D; Hens C; Pal P
    Chaos; 2019 Jan; 29(1):013112. PubMed ID: 30709156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repulsive synchronization in complex networks.
    Gao YC; Fu CJ; Cai SM; Yang C; Eugene Stanley H
    Chaos; 2019 May; 29(5):053130. PubMed ID: 31154772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repulsive inter-layer coupling induces anti-phase synchronization.
    Shepelev IA; Muni SS; Schöll E; Strelkova GI
    Chaos; 2021 Jun; 31(6):063116. PubMed ID: 34241296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends.
    El-Nashar HF; Zhang Y; Cerdeira HA; Ibiyinka A F
    Chaos; 2003 Dec; 13(4):1216-25. PubMed ID: 14604412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude death with mean-field diffusion.
    Sharma A; Shrimali MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):057204. PubMed ID: 23004911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of amplitude synchronization in coupled nonidentical oscillators.
    Qiu Q; Zhou B; Wang P; He L; Xiao Y; Yang Z; Zhan M
    Phys Rev E; 2020 Feb; 101(2-1):022210. PubMed ID: 32168617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive coupling and enhanced synchronization in coupled phase oscillators.
    Ren Q; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016207. PubMed ID: 17677543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinearity-induced synchronization enhancement in micromechanical oscillators.
    Antonio D; Czaplewski DA; Guest JR; López D; Arroyo SI; Zanette DH
    Phys Rev Lett; 2015 Jan; 114(3):034103. PubMed ID: 25659001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
    Campbell S; Wang D
    IEEE Trans Neural Netw; 1996; 7(3):541-54. PubMed ID: 18263453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.