These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 17280088)
1. Nonlocal model for nematic liquid-crystal elastomers. Ennis R; Malacarne LC; Palffy-Muhoray P; Shelley M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061802. PubMed ID: 17280088 [TBL] [Abstract][Full Text] [Related]
2. Modeling and simulation of liquid-crystal elastomers. Zhu W; Shelley M; Palffy-Muhoray P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051703. PubMed ID: 21728552 [TBL] [Abstract][Full Text] [Related]
3. Landau-de Gennes model for nonuniform configurations in nematic liquid crystalline elastomers. Simões M; de Campos A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061704. PubMed ID: 15244595 [TBL] [Abstract][Full Text] [Related]
4. Orientational energy of anisometric particles in liquid-crystalline suspensions. Burylov SV; Zakhlevnykh AN Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012511. PubMed ID: 23944478 [TBL] [Abstract][Full Text] [Related]
5. Incompatible strains associated with defects in nematic elastomers. Fried E; Sellers S J Chem Phys; 2006 Jan; 124(2):024908. PubMed ID: 16422649 [TBL] [Abstract][Full Text] [Related]
6. Pattern formation from consistent dynamical closures of uniaxial nematic liquid crystals. Híjar H; de Hoyos DM; Santamaría-Holek I J Chem Phys; 2012 Mar; 136(11):114109. PubMed ID: 22443750 [TBL] [Abstract][Full Text] [Related]
7. Orientational order and finite strain in nematic elastomers. Fried E; Sellers S J Chem Phys; 2005 Jul; 123(4):044901. PubMed ID: 16095386 [TBL] [Abstract][Full Text] [Related]
8. Computational molecular field theory for nematic liquid crystals. Schimming CD; Viñals J Phys Rev E; 2020 Mar; 101(3-1):032702. PubMed ID: 32289934 [TBL] [Abstract][Full Text] [Related]
9. Fluctuating dynamics of nematic liquid crystals using the stochastic method of lines. Bhattacharjee AK; Menon GI; Adhikari R J Chem Phys; 2010 Jul; 133(4):044112. PubMed ID: 20687638 [TBL] [Abstract][Full Text] [Related]
10. Tricritical behavior of soft nematic elastomers. Liarte DB Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062144. PubMed ID: 24483422 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic theories for mixtures of polymers and rodlike liquid crystalline polymers. Forest MG; Wang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041805. PubMed ID: 16383413 [TBL] [Abstract][Full Text] [Related]
12. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Lopatina LM; Selinger JV Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041703. PubMed ID: 22181153 [TBL] [Abstract][Full Text] [Related]
13. Friction drag of a spherical particle in a liquid crystal above the isotropic-nematic transition. Fukuda J; Stark H; Yokoyama H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021701. PubMed ID: 16196579 [TBL] [Abstract][Full Text] [Related]
15. Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions. Biscari P; Calderer MC; Terentjev EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051707. PubMed ID: 17677084 [TBL] [Abstract][Full Text] [Related]
16. Nanosecond electro-optics of a nematic liquid crystal with negative dielectric anisotropy. Borshch V; Shiyanovskii SV; Li BX; Lavrentovich OD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062504. PubMed ID: 25615116 [TBL] [Abstract][Full Text] [Related]
17. Volume phase transitions of biaxial nematic elastomers. Matsuyama A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011707. PubMed ID: 22400583 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of liquid crystal colloids using a continuum description. Fukuda J; Yoneya M; Yokoyama H; Stark H Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):143-7. PubMed ID: 15542316 [TBL] [Abstract][Full Text] [Related]
19. Transport of particles by a thermally induced gradient of the order parameter in nematic liquid crystals. Škarabot M; Lokar Ž; Muševič I Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062501. PubMed ID: 23848699 [TBL] [Abstract][Full Text] [Related]
20. Nematic fluctuations and semisoft elasticity in liquid-crystal elastomers. Petelin A; Čopič M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062509. PubMed ID: 23848707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]